M.Sc. MATHEMATICS - I YEAR DKM12 : REAL ANALYSIS
 SYLLABUS

Unit I :

Basic topology - Metric spaces - compact sets - perfect sets - connected sets - convergent sequences - subsequences - upper and lower limits - some special sequences. [Chapter 2-2.1 to 2.45, chapter 3-3.1 to 3.20]

Unit II :

Series - Series of non-negative terms - The number e - The root and ratio tests - Power series - summation by parts - Absolute convergence - Addition and multiplication of series. [Chapter 3-3.21 to 3.50]

Unit III :

Continuity and Differentiation - Limit of functions - Continuous functions - Continuity and compactness - Continuity and connectedness - Monotonic functions - Infinite limits and limits at infinity - Differentiation - Mean value theorems - Continuity of Derivatives L'Hospital rule - Taylor's theorem. [Chapter 4-4.1 to 4.34 \& Chapter 5.1 to 5.15]

Unit IV :

The Riemann-Steiltjes integral and Sequences and series of functions - Existence of the integral - Properties of the integral - Integration and Differentiation - Integratin of vectorvalued functions - Uniform convergence - Uniform convergence and continuity - Uniform convergence and intergration. [Chapter 6-6.1 to 6.25 \& Chapter 7-7.1 to 7.16]

Unit V :

Uniform Convergence and differentiation - Equicontinuity - Equicontinuous families of functions - Stone Weierstrass' theorem - some special functions. [Chapter 7-7.17 to 7.26 \& Chapter 8.1 to 8.6]

Text :

Rudin - Principles of Mathematical Analysis (Tata McGrows Hill) Third Edition, Chapters 2 to 8 .

1. UNIT I

Basic Topology

Definition 1.1 Metric space: A set $X(\neq \emptyset)$ whose elements we shall called points is said to be a metric space if with any two points p, q of X there is associated a real number $d(p, q)$, called the distance from p to q, such that

1. $d(p, q)>0$ if $p \neq q$,
2. $d(p, q)=d(q, p) \quad \forall p, q \in X$,
3. $d(p, q) \leq d(p, r)+d(r, p) \quad \forall p, q, r \in X$ (Triangle inequality),
4. $d(p, q)=0$ if $p=q$.

Note 1.2 Any function with these three properties is called a distance function (or) metric.

Example 1.3 1. \mathbb{R}^{1} with usual metric $d(x, y)=|x-y|$ is a metric space. 2. The euclidean space $\mathbb{R}^{k}=\left\{\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\bar{x} \mid x_{i} \in \mathbb{R}^{1}\right\}$ with usual metric

$$
d(\bar{x}, \bar{y})=|\bar{x}-\bar{y}|=\sqrt{\sum_{i=1}^{k}\left(x_{i}-y_{i}\right)^{2}}, \bar{x}, \bar{y} \in \mathbb{R}^{k}
$$

Note 1.4 Usually a non-empty set X with a metric d denoted by (X, d) is called as metric space.

Remark 1.5 Every subset Y of a metric space X is a metric space (with the same metric of) in its own right. For if conditions 1, to 4, of the Definition 1.1 hold for $p, q, r \in X$, then they also hold if you restrict p, q, r to lie in Y.

Definition 1.6 1. $(a, b)=\{x \mid a<x<b\}-$ segment.
2. $[a, b]=\{x \mid a \leq x \leq b\}$ - interval.
3. $(a, b]=\{x \mid a<x \leq b\}$ - Half open interval.
4. $[a, b)=\{x \mid a \leq x<b\}$ - Half open interval.

Definition 1.7 k-cell: If $a_{i}<b_{i} i=1,2, \ldots, k$ then $\left\{\bar{x}=\left(x_{1}, \ldots, x_{2}\right) \mid a \leq\right.$ $\left.x_{i} \leq b_{i}, i=1,2, \ldots, k\right\}$ is called a k-cell.

Note 1.8 One-cell is a interval. Two cell is a rectangle. Three cell is cuboid.

Definition 1.9 Convex Set: A set E subset of \mathbb{R}^{k} is convex if $\lambda \bar{x}+(1-$ $\lambda) \bar{y} \in E$ whenever $\bar{x}, \bar{y} \in E$ and $0<\lambda<1$.
Definition 1.10 Open ball: If $\bar{x} \in \mathbb{R}^{k}, r>0$, the open ball or (closed ball) B with center at \bar{x} and radius r is defined to be the set $\left\{\bar{y} \in \mathbb{R}^{k}| | \bar{x}-\bar{y} \mid<r\right\}$ or $\left\{\bar{y} \in \mathbb{R}^{k}| | \bar{x}-\bar{y} \mid \leq r\right\}$.

$$
\begin{aligned}
\text { i.e., open ball } B(\bar{x}, r) & =\left\{\bar{y} \in \mathbb{R}^{k}| | \bar{x}-\bar{y} \mid<r\right\} \\
\text { closed ball } B[\bar{x}, r] & =\left\{\bar{y} \in \mathbb{R}^{k}| | \bar{x}-\bar{y} \mid \leq r\right\}
\end{aligned}
$$

Lemma 1.11 Balls are convex.
Proof: Let $B(\bar{x}, r)$ be a open ball and let \bar{y}, \bar{z} lie in a open ball B.
$\Rightarrow|\bar{y}-\bar{x}|<r$ and $|\bar{z}-\bar{x}|<r$

$$
\begin{aligned}
0 \leq \lambda \leq 1 \Rightarrow 0 \leq 1-\lambda & \Rightarrow|\lambda \bar{y}+(1-\lambda) \bar{z}-\bar{x}| \\
& =|\lambda \bar{y}+(1-\lambda) \bar{z}-(\lambda \bar{x}+(1-\lambda) \bar{x})| \\
& =|\lambda(\bar{y}-\bar{x})+(1-\lambda)(\bar{z}-\bar{x})| \\
& \leq \lambda|\bar{y}-\bar{x}|+(1-\lambda)|\bar{z}-\bar{x}| \\
& <\lambda r+(1-\lambda) r=r \\
& \Rightarrow \lambda|\bar{y}+(1-x) \bar{z}-\bar{x}|<r \\
& \Rightarrow \lambda \bar{y}+(1-\lambda) \bar{z} \text { lies in the open ball } B .
\end{aligned}
$$

\Rightarrow Every open ball is convex. Similarly every closed ball is convex.
Note 1.12 Every k-cell is convex.
Definition 1.13 Neighbourhood of a point: Let X be a metric space. The neighbourhood a point p is $=\{q \in X \mid d(p, q)<r\}$ and is denoted by $N_{r}(p)$.

Note $1.14 N_{r}(p)=(p-r, p+r)$ in \mathbb{R}.
Definition 1.15 Limit point: Let $p \in X$ and $E \subset X$. The point p is said to be the limit point of E, if every neighbourhood of p contains a point q of E other than p.

Note $1.16 p$ is a limit point of $E . \Rightarrow N_{r}(p) \cap E-\{p\} \neq \emptyset \forall r>0$.
Example 1.17 $A=\{0,1,1 / 2, \ldots\} ; N_{r}(0)=(-r, r) \forall r>0$. By Archimedian principle $\forall r>0$ there exists an $+v e$ integer n such that $n \cdot r>1$

$$
\begin{aligned}
& \Rightarrow r>1 / n \\
& \Rightarrow r>1 / n \\
& \Rightarrow 0<1 / n<r \\
& \Rightarrow 1 / n \in(-r, r) \\
& \Rightarrow(A-\{0\}) \cap(-r, r) \neq \emptyset \\
& \Rightarrow(A-\{0\}) \cap N_{r}(0) \neq \emptyset \forall r>0 \\
& \Rightarrow 0 \text { is a limit point of } A .
\end{aligned}
$$

Clam: 1 is not a limit point. Consider $N_{1 / 4}(1)=(1-1 / 4,1+1 / 4)=$ $(3 / 4,5 / 4) . \therefore(3 / 4,5 / 4) \cap(A-\{0\})=\emptyset$ (i.e.), $N_{1 / 4}(1) \cap(A-\{1\})=\emptyset \Rightarrow 1$ is not a limit point of A. Similarly we can prove that $1 / n$ is not a limit point $\forall n \in N$. Hence 0 is the only limit point of A.

Definition 1.18 Isolated point: Let X be a metric space and E subset of X. If a point $p \in E$ is not a limit point of E. Then we say that p is an isolated point of E. In the above example $1,1 / 2,1 / 3, \ldots$ are the isolated point of A.

Definition 1.19 Closed set: Let X be a metric space and $E \subset X, E$ is said to be closed in X, if every limit point of E is a point of E. In the previous example A is closed in R since $\{0\} \subset A$.

Definition 1.20 Interior point: Let X be a metric space and $E \subset C$. A point p is an interior point of E. If there exists neighbourhood $N(p)$ such that N is contained in $E(N \subset E)$.

Definition 1.21 Open set: Let X be a metric space and $E \subset X . E$ is said to be open in X if every point of E is an interior point of E.

Note 1.22 Let E^{\prime} denote the set of all limit points of E. Let E° denote the set of all interior points of $E . E^{\circ} \subseteq E$ always. E is closed if $E^{\prime} \subset E$ and E is open if $E=E^{\circ}$.

Definition 1.23 Perfect set: Let X be a metric space and $E \subset X . E$ is said to be perfect in X if E is closed and if every point of E is a limit point of E.

Note $1.24 E$ is perfect if $E=E^{\prime}$.

Definition 1.25 Complement of a set: Complement of a set is defined as $E^{c}=\{p \in X \mid p \notin E\}$.

Definition 1.26 Bounded Set: Let X be a metric space and $E \subset X . E$ is said to be bounded in X if there exists a real number M and a point $q \in X$ such that $d(p, q)<M \forall p \in E$.

Definition 1.27 Dense Set: E is dense in X if every point of X is a limit point of E or a point of E or both. If E is dense in X, then $X=\bar{E}=E \cup E^{\prime}$.

Example $1.28 Q$ is dense in R.

Theorem 1.29 Every neighbourhood is an open set.
Proof: Consider a neighbourhood $N_{r}(p)$ (neighbourhood of p with radius $r>0)$. To prove: $N_{r}(p)$ open. Let $q \in N_{r}(p)$. Enough to prove: q is an interior point of N_{r}. Now $q \in N_{r}(p) \Rightarrow d(p, q)<r$. Let $S=r-d(p, q)$. Claim: $N_{S}(q) \subset N_{r}(p)$

$$
\begin{aligned}
r & \in N_{S}(q) \\
& \Rightarrow d(r, q)<S=r-d(p, q) \\
& \Rightarrow d(p, q)+d(r, q)<r \\
& \Rightarrow d(p, r)<r \\
& \Rightarrow r \in N_{r}(p) \\
& \therefore N_{S} \subset N_{r}(p)
\end{aligned}
$$

Hence the claim. That is an interior pt of $N_{r}(p)$. Since q is an arbitrary. Every point of $N_{r}(p)$ is an interior point. $\Rightarrow N_{r}(p)$ is open. \therefore Every neighbourhood is open.

Theorem 1.30 If p is a limit point of E. Then every neighbourhood of p contains infinitely many points of E.
Proof: Suppose there exists a neighbourhood N of p contains only finitely many points of E.
Let $q_{1}, q_{2}, \ldots, q_{n}$ be those points of E in N differ from $p .\left\{q_{1}, q_{2}, \ldots, q_{n} \in\right.$ $(N \cap E-\{p\})$. Let $r=\min \left\{d\left(p, q_{i}\right) \mid i=1 \ldots n\right\}$. Clearly, $r>0$. Now the neighbourhood $N_{r}(p)$ contains no point q of E. such that $q \neq p$. Then p is not a limit point of E which is a contradiction to p is a limit point of $E . \therefore$ Every neighbourhood of p contains infinitely many points of E.

Corollary 1.31 Any finite set has no limit point.
Proof: Let X be a metric space and $E \subset X$ be a finite set. To prove: E has no limit points. If p is limit point of E. Then every neighbourhood of p contains infinitely many points of E.(by above theorem) This is a contradiction to E is a finite set. Hence a finite set has no limit point.

Theorem 1.32 Let $\left\{E_{\alpha}\right\}$ be a (finite or infinite) collection of set E_{α}. Then $\left(\bigcup E_{\alpha}\right)^{c}=\bigcap E_{\alpha}^{c}$.
Proof: Let $x \in\left(\bigcup E_{\alpha}\right)^{c}$.

$$
\begin{aligned}
& \Leftrightarrow x \notin \bigcup E_{\alpha} \\
& \Leftrightarrow x \notin E_{\alpha} \forall \alpha \\
\Leftrightarrow & x \in E_{\alpha}^{c} \forall \alpha \\
& \Leftrightarrow x \in \bigcap E_{\alpha}^{c} \\
\therefore\left(\bigcup E_{\alpha}\right)^{c} & =\bigcap E_{c}^{\alpha}
\end{aligned}
$$

Theorem 1.33 A set E is an open iff its complement is closed.
Proof: Let E be an open set. To prove: E^{c} is closed. Let q be a limit point of $E^{c} \Rightarrow$ Every neighbourhood of q contains atleast one point p of E^{c} such that $p \neq q . \Rightarrow q$ is not an interior point of $E .(\because E$ is open $)$ $\left(\because N_{r}(q) \cap E^{c}-\{q\} \neq \emptyset \forall r>0\right.$ (i.e.), $\left.N_{r}(q) \nsubseteq E \forall r>0\right) \Rightarrow q \notin E \Rightarrow$ $q \in E^{c}$. Since q is arbitrary. E^{c} contains all its limit point. $\therefore E^{c}$ is closed. Conversely, let E^{c} be closed. To prove: E is open. Let $q \in E$. To prove: q is an interior point of E. Since $q \in E \Rightarrow q \notin E^{c} \Rightarrow q$ is not a limit point of E^{c}. Which implies, there exists neighbourhood of N of q such that $N \cap\left(E^{c}-\{q\}\right)=\emptyset$ (i.e.) $N \cap E^{c}=\emptyset\left(\because q \notin E^{c}\right) \Rightarrow N \subset E \Rightarrow q$ is an interior point of E. Since q is arbitrary. Every point of E is an interior point of $E . \Rightarrow E$ is open.

Corollary 1.34 A set F is closed iff its complement is open.
Proof: $F=\left(F^{c}\right)^{c}$ is closed. $\Leftrightarrow F^{c}$ is open. (by previous theorem)
Theorem 1.35 (a) For any collection $\left\{G_{\alpha}\right\}$ of open sets $\bigcup_{\alpha} G_{\alpha}$ is open (or) Arbitrary union of open sets is open.
(b) For any collection $\left\{F_{\alpha}\right\}$ of closed sets $\bigcap_{\alpha} F_{\alpha}$ is closed (or) Arbitrary intersection of closed sets is closed.
(c) For any finite collection $\left\{G_{1}, G_{2}, \ldots, G_{n}\right\}$ of open sets $\bigcap_{i=1}^{n}$ is open (or) Finite intersection of open sets is open.
(d) For any finite collection $\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$ of closed sets $\bigcup_{i=1}^{n} F_{i}$ is closed (or) Finite union of closed sets is closed.
Proof: (a) To prove: $\bigcup_{\alpha} G_{\alpha}$ is open where each G_{α} is open. Let $p \in$ $\bigcup_{\alpha} G_{\alpha} \Rightarrow p \in G_{\alpha}$ for some $\alpha \Rightarrow$ there exists a neighbourhood N of p such that $N \subset G_{\alpha}\left(\because G_{\alpha}\right.$ is open $) \Rightarrow N \subset G_{\alpha} \subset \bigcup_{\alpha} G_{\alpha} \Rightarrow N \subset \bigcup_{\alpha} G_{\alpha} \Rightarrow p$ is an interior point of $\bigcup_{\alpha} G_{\alpha}$. Since p is arbitrary, every point of $\bigcup_{\alpha} G_{\alpha}$ is an interior point. $\Rightarrow \bigcup_{\alpha} G_{\alpha}$ is open.
(b) To prove: $\bigcap_{\alpha} F_{\alpha}$ is closed where each F_{α} is closed $\forall \alpha$. (i.e.) To prove $\left(\bigcap_{\alpha} F_{\alpha}\right)^{c}$ is open. $\left(\bigcap_{\alpha} F_{\alpha}\right)^{c}=\bigcup_{\alpha} F_{\alpha}^{c} . F_{\alpha}$ is closed $\Rightarrow F_{\alpha}^{c}$ is open. By (a) $\bigcup_{\alpha} F_{\alpha}^{c}$ is open. $\Rightarrow\left(\bigcap_{\alpha} F_{\alpha}\right)^{c}$ is open. $\Rightarrow \bigcap_{\alpha} F_{\alpha}$ is closed.
(c) To prove: $\bigcap_{i=1}^{n} G_{i}$ is open when G_{i} is open $\forall i=1, \ldots, n$. Let $x \in$ $\bigcap_{i=1}^{n} G_{i} \Rightarrow x \in G_{i} \forall i=1$ to n. For each i, there exists a neighbourhood $N_{r_{i}}(x)$ such that $N_{r_{i}}(x) \subset G_{i} \forall i=1,2, \ldots, n\left(\because G_{i}\right.$ is open $)$. Let $r=\min \left\{r_{1}, r_{2}, \ldots, r_{n}\right\} \Rightarrow N_{r}(x) \subset N_{r i}(x) \forall i \Rightarrow N_{r}(x) \subset G_{i} \forall i \Rightarrow N_{r}(x) \subset$ $\bigcap_{i=1}^{n} G_{i} \Rightarrow x$ is an interior point of $\bigcap_{i=1}^{n} G_{i}$. Since x is arbitrary, every point of $\bigcap_{i=1}^{n} G_{i}$ is an interior point. $\therefore \bigcap_{i=1}^{n} G_{i}$ is open.
(d) To prove: $\bigcup_{i=1}^{n} F_{i}$ is closed when F_{i} is closed $\forall i$. (i.e.) To prove $\left(\bigcup_{i=1}^{n} F_{i}\right)^{c}$ is open. $\left(\bigcup_{i=1}^{n} F_{i}\right)^{c}=\bigcup_{i=1}^{n} F_{i}^{c}$. Now, $\forall i F_{i}$ is closed $\Rightarrow F_{i}^{c}$ is open. By (c), $\bigcap_{i=1}^{n} F_{i}^{c}$ is open. $\Rightarrow\left(\bigcup_{i=1}^{n} F_{i}\right)^{c}$ is open. $\Rightarrow \bigcup_{i=1}^{n} F_{i}$ is closed.

Note 1.36 Arbitrary intersection of open sets need not be open.
Example 1.37 Consider $G_{n}=(-1 / n, 1 / n)$ in R with usual metric. $\Rightarrow G_{n}$ is open $\forall n$. Now, $\bigcap_{n=1}^{\infty} G_{n}=\bigcap_{n=1}^{\infty}(-1 / n, 1 / n)=\{0\}$ is not open.

Result 1.38 Arbitrary Union of closed sets need not be closed.
Proof: Consider $F_{n}=(-\alpha,-1 / n) \cup(1 / n, \alpha) \forall n$. (i.e.) $F_{n}^{c}=(-1 / n, 1 / n) \forall n$ $\Rightarrow F_{n}^{c}$ is open $\Rightarrow F_{n}$ is closed $\forall n$. Now, $\left(\bigcup_{n=1}^{\infty} F_{n}\right)^{c}=\bigcap_{n=1}^{\infty} F_{n}^{c}=$ $\bigcap_{n=1}^{\infty}(-1 / n, 1 / n)=\{0\}$ is not open in $R . \Rightarrow\left(\bigcup F_{n}\right)^{c}$ is not open in $R . \Rightarrow$ $\cup F_{n}$ is not closed in R.

Definition 1.39 If X is a metric space and $E \subset X$ and if E^{\prime} denotes the set of all limit points of E in X. Then the closure of E is the set $\bar{E}=E \cup E^{\prime}$.

Theorem 1.40 If X is a metric space and $E \subset X$. Then

1. \bar{E} is closed.
2. $E=\bar{E}$ iff E is closed.
3. $\bar{E} \subset F_{\alpha} \forall$ closed set $F_{\alpha} \subset X$ such that $E \subset F_{\alpha}$.

Proof: (1) To prove: \bar{E} is closed. (i.e.) To prove \bar{E}^{c} is open. Let $p \in \bar{E}^{c}$ $\Rightarrow p \in E^{c} \cap E^{\prime c} \Rightarrow p \in E^{c}$ and $p \in E^{\prime c}\left(\because \bar{E}=E \cup E^{\prime} \bar{E}^{c}=E^{c} \cap\left(E^{\prime}\right)^{c}\right)$
$\Rightarrow p \notin E$ and $p \notin E^{\prime} \Rightarrow p \notin E$ and p is not a limit point of E
\Rightarrow there exists a neighbourhood N of p such that $N \cap(E-\{p\})=\emptyset$ and $p \notin E$
$\Rightarrow N \cap E=\emptyset$
\Rightarrow every point of N is not a limit point of $E(\because N$ is open $) \Rightarrow N \subset E^{\prime c}$. From (1), $N \subset E^{c} \Rightarrow N \subset \bar{E}^{c} \cap E^{c}=\left(E \cup E^{\prime}\right)^{c}=\bar{E}^{c} \Rightarrow N \subset \bar{E}^{c}$
$\Rightarrow p$ is an interior point of $\bar{E}^{c} \Rightarrow$ Since p is an arbitrary. \therefore Every point of \bar{E}^{c} is an interior point. $\Rightarrow \bar{E}^{c}$ is open. $\Rightarrow \bar{E}$ is closed.
(2) E is closed. $\Rightarrow E^{\prime} \subset E \Rightarrow E \cup E^{\prime} \subset E \Rightarrow \bar{E} \subset E$. But $E \subset \bar{E}$ always. $\therefore E=\bar{E}$. Conversely, $E=\bar{E}=E \cup E^{\prime} \Rightarrow E^{\prime} \subset E \Rightarrow E$ is closed.
(3) Let $p \in \bar{E} \Rightarrow p \in E \cup E^{\prime} \Rightarrow p \in E$ or $p \in E^{\prime}$. If $p \in E$ then $p \in F[\because$. $E \subset F]$ Let $p \in E^{\prime} \Rightarrow p$ is a limit point of $E \Rightarrow$ Every neighbourhood of p contains atleast one point $q \in E$ such that $q \neq p \Rightarrow$ Every neighbourhood of p contains atleast one point $q \in F$ such that $q \neq p[\because E \subset F] \Rightarrow p$ is a limit point of $F \Rightarrow p \in F(\because F$ is closed $) \Rightarrow \bar{E} \subset F$.

Theorem 1.41 Let E be a non-empty set of real numbers, which is bounded above. Let $y=\sup E$ then $y \in \bar{E}$. Hence $y \in E$ if E is closed.
Proof: Let $y=\sup E$. By the definition of $\sup \forall$ real $h>0$ there exists $X \in E$ such that $y-h<x<y \Rightarrow y-h<x<y+h \forall h>0$ and $x \in E \Rightarrow N_{h}(y) \cap E-\{y\} \neq \emptyset \forall h>0 \Rightarrow y$ is a limit point of $E \Rightarrow y \in E^{\prime} \subset$ $\bar{E} \Rightarrow y \in \bar{E}$. If E is closed then $E=\bar{E}$. Hence $y \in E$ if E is closed.

Note 1.42 Let X be a metric space and $Y \subset X$. Then Y itself is a metric space under the same metric in X.

Definition 1.43 Open relative: Suppose $E \subset Y \subset X$ and E is open relative to Y if $\forall p \in E$ there exists $r_{p}>0$ such that $d(p, q)<r_{p}, q \in Y \Rightarrow$ $q \in E$.

Note $1.44 N_{r_{p}}(p) \cap Y \subset E$.
Example $1.45(a, b) \subset R \subset R \times R$. Here segment (a, b) is open in R but not open in $R \times R$.

Theorem 1.46 Suppose $Y \subset X$, a subset E of Y is open relative to Y iff $E=Y \cap G$ for some open subset G of X.
Proof: Suppose E is open relative to Y. Then $\forall p \in E$ there exists $r_{p}>0$ such that $d(p, q)<r_{p}, q \in Y \Rightarrow q \in E$.
Let $V_{p}=\left\{q \in X \mid d(p, q)<r_{p}\right\} \Rightarrow V_{p}$ is neighbourhood in $X \Rightarrow V_{p}$ is open in X. Let $G=\bigcup_{p \in E} V_{p} \Rightarrow G$ is open in X \{Arbitrarty \bigcup of open set is open $\}$. Claim: $E=Y \cap G$. Let $p \in E \Rightarrow p \in V_{p}\left(\because V_{p}\right.$ is neighbourhood of $\left.p\right)$ and $p \in V(\because E \subset Y) \Rightarrow p \in V_{p} \subset \bigcup V_{p}=G$ and $p \in Y \Rightarrow p \in G \cap Y \Rightarrow E \subset G \cap Y$
Let $q \in Y \cap G \Rightarrow q \in G$ and $q \in Y \Rightarrow q \in \bigcup_{p \in E} V_{p}$ and $q \in Y \Rightarrow q \in V_{p}$ for some $p \in E$ and $q \in Y \Rightarrow d(p, q)<r_{p}$ and $q \in Y$ for some $p \Rightarrow q \in E$ (by (1)) $\Rightarrow Y \cap G \subset E \ldots \ldots(3)$

By (2) and (3), $E=y \cap G$. Conversely, suppose $E=G \cap Y$ for some open set G in X. To prove: $E \subset Y$ is open relative to Y. Let $p \in \bar{E} \Rightarrow p \in G \cap Y$ for some open set G in $X . \Rightarrow p \in Y$ and $p \in G \Rightarrow p \in Y$ and $V_{p} \subset G$ where V_{p} is a neighbourhood of p in $X \Rightarrow Y \cap V_{p} \subset Y \cap G=E \Rightarrow E$ is open relative to Y.

Compact Set:

Definition 1.47 Let X be a metric space. By an open cover of a set E in X we mean a collection $\left\{G_{\alpha}\right\}$ of open sets in X such that

$$
E \subset \bigcup_{\alpha} G_{\alpha}
$$

Example 1.48 Consider the collection, $I=\{(-n, n) \mid n \in N\}$ is a family of open sets in R clearly I is an open cover for R.

Definition 1.49 A subset K of metric space X is said to be compact, if every open cover of K contains a finite subcover (or) A set K is compact in X and

$$
K \subset \bigcup_{\alpha} G_{\alpha} \cdot G_{\alpha}
$$

is open in X, which implies, there exists $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
K \subset \bigcup_{i=1}^{n} G_{\alpha_{i}}
$$

Result 1.50 Let X be a metric space. Let $A=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be a finite set in X. Clearly A is compact.

Theorem 1.51 Suppose $K \subset Y \subset X$. Then, K is compact relative to X iff K is compact relative to Y.
Proof: Suppose K is compact relative to X. To prove: K is compact relative to Y. Let $\left\{V_{\alpha}\right\}$ be collection of open set in Y and $K \subset \bigcup_{\alpha} V_{\alpha}$. Now V_{α} is open in $Y \Rightarrow$ there exists an open set G_{α} in X such that $V_{\alpha}=$ $G_{\alpha} \cap Y \forall \alpha$. Now $K \subset \bigcup_{\alpha} V_{\alpha} \Rightarrow K \subset \bigcup_{\alpha}\left(G_{\alpha} \cap Y\right) \Rightarrow K \subset\left(\bigcup_{\alpha} G_{\alpha}\right) \cap Y \Rightarrow$ $K \subset \bigcup_{\alpha} G_{\alpha} . G_{\alpha}$ is open in X. Since K is compact relation to X, there exists $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $K \subset \bigcup_{i=1}^{n} G_{\alpha_{i}}$. Now $K \cap Y \subset\left(\bigcup_{i=1}^{n} G_{\alpha_{i}}\right) \cap Y \Rightarrow K \subset$ $\bigcup_{i=1}^{n}\left(G_{\alpha_{i}} \cap Y\right) \Rightarrow K \subset \bigcup_{i=1}^{n} V_{\alpha_{i}} \Rightarrow K$ is compact relative to Y. Conversely, suppose K is compact relative to Y. To prove: K is compact relative to X. Let $\left\{G_{\alpha}\right\}$ be collection of open set in X. Now, $K \subset \bigcup_{\alpha} G_{\alpha} \Rightarrow K \cap Y \subset$ $\left(\bigcup_{\alpha} G_{\alpha}\right) \cap Y \Rightarrow K \subset \bigcup_{\alpha}\left(G_{\alpha} \cap Y\right)$ where $V_{\alpha}=G_{\alpha} \cap Y \Rightarrow K \subset \bigcup_{\alpha} V_{\alpha}\left[V_{\alpha}\right.$ is open in Y]. Since K is compact relative to Y, there exists $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $K \subset \bigcup_{i=1}^{n} V_{\alpha_{i}}=\bigcup_{i=1}^{n}\left(G_{\alpha_{i}} \cap Y\right)$ (i.e.) $K \subset \bigcup_{i=1}^{n} G_{\alpha_{i}} \cap Y \Rightarrow K \subset$ $\bigcup_{i=1}^{n} G_{\alpha_{i}} \Rightarrow K$ is compact relative to X.

Theorem 1.52 Compact subsets of a metric are closed.
Proof: Let K be a compact subset of a metric X. To prove: K is closed, it is enough to prove that K^{c} is open. If $q \in K$. Let V_{q} and W_{q} be neighbourhood of p and q respectively of radius less than $d(p, q) / 2 \Rightarrow V_{q} \cap W_{q}=\emptyset \forall q \in$ K. $\left\{W_{q} \mid q \in K\right\}$ is an open cover for K. Since K is compact there exist $q_{1}, q_{2}, \ldots, q_{n} \in K$ such that $K \subset \bigcup_{i=1}^{n} W_{q_{i}}$. Let $W=\bigcup_{i=1}^{n} W_{q_{i}}$ and $V=$ $V_{q_{1}} \cup V_{q_{2}} \ldots \cup V_{q_{n}}$. Clearly, V is a neighbourhood of p. Also $V \cap W=\emptyset \Rightarrow$ $V \subset W^{c} \subset K^{c} \Rightarrow V \subset K^{c} \Rightarrow p$ is an interior point of $K^{c} \Rightarrow K^{c}$ is open $\{\because p$ is arbitrary $\} \Rightarrow K$ is closed.

Theorem 1.53 Closed subset of a compact sets are compact.
Proof: Suppose $F \subset K \subset X$, where F is closed with respect to X and K is compact. To prove: F is compact. Let $\left\{V_{\alpha}\right\}$ be an open cover for F. Now F is closed $\Rightarrow F^{c}$ is open. Let $\Omega=\left\{V_{\alpha}\right\} \cup\left\{F^{c}\right\}$. Now, Ω is an open cover for K. As K is compact, there exists an finite subcover ϕ of Ω such that ϕ covers $K \Rightarrow \phi$ covers $F(\because F \subset K)$. If $F^{c} \in \phi$ then $\phi-\left\{F^{c}\right\}$ covers $F . \therefore F$ is compact.

Corollary $1.54 F$ is closed and K is compact. Then $F \cap K$ is compact.
Proof: Since K is compact subset of a metric space $\Rightarrow K$ is closed. [by Theorem 1.52] $\Rightarrow K \cap F$ is closed. $[\because F$ is closed] Now $F \cap K \subset K \Rightarrow F \cap K$ is compact, by Theorem 1.53

Theorem 1.55 If $\left\{K_{\alpha}\right\}$ is a collection of compact subset of a metric set X, such that the intersection of every finite subcollection of K_{α} is non-empty, then $\bigcap K_{\alpha}$ is non-empty.
Proof: Fix a member K_{1} of $\left\{K_{\alpha}\right\}$ and put $G_{\alpha}=K_{\alpha}^{c}$. Assume that no point of K_{1} belongs to every K_{α} (i.e.) $K_{1} \cap\left(\bigcap_{\alpha} K_{\alpha}\right)=\emptyset \Rightarrow K_{1} \subset\left(\bigcap K_{\alpha}\right)^{c}=$ $\bigcup_{\alpha} K_{\alpha}^{c}=\bigcup_{\alpha} G_{\alpha} \Rightarrow K_{1} \subset \bigcup_{\alpha} G_{\alpha}$. Since $\left\{G_{\alpha}\right\}$ is an open cover for K_{1} and K_{1}
is compact, there exists $\alpha_{1}, \ldots, \alpha_{n}$ such that $K_{1} \subset \bigcup_{i=1}^{n} G_{\alpha_{i}}=\left(\bigcup_{i=1}^{n} K_{\alpha_{i}}^{c}\right)=$ $\left(\bigcap_{i=1}^{n} K_{\alpha_{i}}\right)^{c} \Rightarrow K_{1} \cap\left(\bigcap_{i=1}^{n} K_{\alpha_{i}}\right)=\emptyset$. This is a contradiction to the above hypothesis. \therefore Our assumption is wrong. \therefore We have $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$.

Corollary $1.56\left\{K_{n}\right\}$ is a sequences of non-empty compact set such that $K_{n} \supset K_{n+1}(n=1,2, \ldots)$ then $\bigcap_{n=1}^{\infty} K_{n}$ is non-empty.
Proof: Since $K_{n} \supset K_{n+1} \forall n$. We have every finite intersection of K_{n} is non-empty. \therefore by above theorem $\bigcap_{n=1}^{\infty} K_{n}$ is non-empty.

Theorem 1.57 Bolzono weistras theorem: If E is a finite subset of a compact set k. Then E has a limit point in K.
Proof: Suppose no point of k is a limit point of E. Then for each $q \in k$ there exists a neighbourhood V_{q} of q such that V_{q} contains atmost one point of E namely, q if $q \in E$. Let $\left\{V_{q} \mid q \in k\right\}$ be an open cover for k. Clearly, no finite subcollection of $\left\{V_{q}\right\}$ covers E and same is true for k. [Since $E \subset k$] This is a contradiction to the fact that k is compact. \therefore Our assumption is wrong. $\therefore E$ has a limit point in k.

Theorem 1.58 If $\left\{I_{n}\right\}$ is a sequence of intervals in R such that $I_{n} \supset I_{n+1}$ $n=1,2, \ldots$ Then $\bigcap_{n=1}^{\infty} I_{n}$ is non-empty.
Proof: Let $I_{n}=\left[a_{n}, b_{n}\right] n=1,2, \ldots$ Let $E=\left\{a_{n} / n \in N\right\} \Rightarrow E$ is bounded above by b_{1} Let x be the least upper bound of E. (i.e.) $x=\sup E$. If m and n are positive integers, then $a_{n} \leq a_{m+n} \leq x \leq b_{m+n} \leq b_{m} \forall m \Rightarrow x \leq b_{m} \forall m$ and $a_{m} \leq x \leq m \Rightarrow a_{m} \leq x \leq b_{m} \forall m \Rightarrow x \in\left[a_{m}, b_{m}\right] \forall m \Rightarrow x \in I_{m} \forall m \Rightarrow$ $x \in \bigcap_{n=1}^{\infty} I_{n} \therefore x \in \bigcap_{n=1}^{\infty}$ is non-empty.

Theorem 1.59 Let k be a the integer $\left\{I_{n}\right\}$ is a sequence of k cells such that $I_{n} \supset I_{n+1} \supset I_{n+2} \ldots$ Then $x \in \bigcap_{n=1}^{\infty} I_{n} \neq \phi$.
Proof: Given $I_{n}=\left\{\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{k} \mid a_{n, j} \leq x_{j} \leq b_{n, j}, j=1,2, \ldots, k\right.$ and $n=1,2, \ldots\}$. Given $I_{n} \supset I_{n+1} \supset I_{n+2} \ldots$ Let $I_{n, j}=\left[a_{n, j}, b_{n, j}\right] 1 \leq j \leq k$ and $n=1,2, \ldots$ For each $j,\left\{I_{n, j}\right\}$ is a sequence of intervals such that $I_{n, j} \supset$ $I_{n+1, j} n=1,2,3,4 \ldots \Rightarrow \bigcap_{n=1}^{\infty} I_{n, j} \neq \emptyset$ for each j (By Theorem 1.58). Let $x_{j} \in \bigcap_{n=1}^{\infty} I_{n, j}$ for each $j=1$ to $k \Rightarrow$ for each $j, x_{j} \in I_{n, j} \forall n=1,, 2, \ldots$ Let $\bar{x}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \in I_{n} \forall n=1,2, \ldots \Rightarrow \bar{x} \in \bigcap_{n=1}^{\infty} I_{n} \Rightarrow \bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$.

Theorem 1.60 Every k-cell is compact.
Proof: $I=\left\{\bar{x}=\left\{x_{1}, x_{2}, \ldots, x_{k} \in \mathbb{R}^{k} \mid a_{i} \leq x_{i} \leq b_{i}\right\}\right.$, put $S=\left[\sum_{i=1}^{k}\left(b_{i}-\right.\right.$ $\left.\left.a_{i}\right)^{2}\right]^{\frac{1}{2}}$. Now, for each $\bar{x}, \bar{y} \in I,|\bar{x}-\bar{y}| \leq S$. To prove: I is compact. Suppose I is not compact. \Rightarrow There exists an open cover $\left\{G_{\alpha}\right\}$ of I such that it has no finite subcover for I. Put $c_{j}=\frac{a_{j}+b_{j}}{2}$. The intervals $\left[a_{j}, b_{j}\right]$ and $\left[c_{j}, b_{j}\right]$. Then determine $2^{k}, \mathrm{k}$-cells Q_{i} such that $I=\bigcup_{i=1}^{2^{k}} Q_{i}$. Then atleast one of these cells Q_{i}, say I_{1} cannot be covered by any finite subcollection of G_{α}. Proceeding like this we have (a) $I \supset I_{1} \supset I_{2} \supset \ldots$
(b) Each I_{n} is not covered by any finite subcollection of $\left\{G_{\alpha}\right\}$ and (c) $\bar{x}, \bar{y} \in I_{n},|\bar{x}-\bar{y}| \leq \frac{\delta}{2^{n}}$
by (a) $\left\{I_{n}\right\}$ is a sequence of k-cells such that $I_{n} \supset I_{n+1} \supset I_{n+2} \ldots, n=$ $1,2, \ldots \Rightarrow \bigcap_{n=1}^{\infty} I_{n} \neq \emptyset$ for each j (By Theorem 1.58) $\Rightarrow \bar{x} \in \bigcap_{n=1}^{\infty} I_{n} \Rightarrow \bar{x} \in$ $I_{n} \forall n=1,2, \ldots \Rightarrow \bar{x} \in G_{\alpha}$ for some $\alpha\left[\because I_{n} \subset I \subset \bigcup_{\alpha} G_{\alpha}\right] \Rightarrow$ There exists a neighbourhood $N_{r}(\bar{x})$ such that $N_{r}(\bar{x}) \subset G_{\alpha}\left[\because G_{\alpha}\right.$ is open $] \Rightarrow\{\bar{y}| | \bar{x}-\bar{y} \mid<$ $r\} \subset G_{\alpha} \ldots$. . (1)
Since $r>0, \delta>0$. There exists a positive integer n such that $n \cdot r>\delta$ (by Archimedian principle) $\Rightarrow 2^{n} \cdot r>n \cdot r>\delta \Rightarrow 2^{n} \cdot r>\delta \Rightarrow r>S \cdot 2^{-n} \Rightarrow$ $r>\frac{\delta}{2^{n}} \ldots$. (2)
Let $\bar{y} \in I_{n} \Rightarrow|\bar{x}-\bar{y}|<\frac{\delta}{2^{n}}\left[\because \bar{x} \in I_{n} \forall n\right] \Rightarrow|\bar{x}-\bar{y}|<r \Rightarrow \bar{y} \in N_{r}(\bar{x}) \Rightarrow$ $I_{n} \subset N_{r}(\bar{x}) \subset G_{\alpha} \Rightarrow \Leftarrow(\mathrm{b}) . \therefore$ Our assumption is wrong. \therefore Every k-cell is compact.

Theorem 1.61 A set in \mathbb{R}^{k} has one of the following three properties then it has the other two.
(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset of E has a limit point in E.

Proof: $(a) \Rightarrow(b)$ Assume that E is closed and bounded. To prove: E is compact. Since E is bounded, $E \subset I$ for some k-cell I. By the above theorem I is compact. $\therefore E$ is a closed subset of compact set $I . \Rightarrow E$ is compact.
$(b) \Rightarrow(c)$ The proof is obvious from, Theorem 1.57.
$(c) \Rightarrow(a)$ Suppose every infinite subset of E has a limit point in E. To prove E is closed and bounded. Suppose E is not bounded. \Rightarrow There exists $\bar{x}_{n} \in E$ such that $\left|\bar{x}_{n}\right|>n(n=1,2, \ldots)$. Let $\left.S=\left\{\bar{x}_{n}| | \bar{x}_{n} \mid>n, n=1,2, \ldots\right\} \ldots \ldots .{ }^{*}\right)$ Clearly, S is a infinite subset of E and S has no limit points in \mathbb{R}^{k}. Which implies, S has no limit points in $E\left[\because E \subset \mathbb{R}^{k}\right]$ (Suppose \bar{x} is a limit point of S. Then $N_{r}(\bar{x})$ contains infinitely many points of $S \forall \bar{y} \in S$. Now, $||\bar{y}|-|\bar{x}||<|\bar{y}-\bar{x}|<r \Rightarrow|\bar{y}|<|\bar{x}|+r<m$ for some integer $m \Rightarrow|\bar{y}|<m$ for integer \bar{y} in S. There exists $n>m$ such that $\bar{y}=\bar{x}_{n} \in S$ and $\left|\bar{x}_{n}\right|<m \Rightarrow$ $\left|\bar{x}_{n}\right|<m<n \Rightarrow\left|\bar{x}_{n}\right|<n, \bar{x}_{n} \in S \Rightarrow \Leftarrow$ to $\left.\left(^{*}\right)\right) \therefore E$ is bounded. Suppose E is not closed. There exists a point \bar{x}_{0} in \mathbb{R}^{k} such that \bar{x}_{0} a limit point of E, but $\bar{x}_{0} \notin E \Rightarrow$ Every neighbourhood of \bar{x}_{0} contains a point \bar{y} of E such that $\bar{y} \neq \bar{x}_{0}$ (i.e.) For $n=1,2, \ldots, N_{\frac{1}{n}}\left(\bar{x}_{0}\right)$ contains a point \bar{x}_{n} of $E, \bar{x}_{n} \neq \bar{x}_{0}$. Let $S=\left\{\bar{x}_{n}| | \bar{x}_{n}-\bar{x}_{0} \left\lvert\,<\frac{1}{n} n=1\right.,2, \ldots\right\} . \therefore S$ is infinite. [otherwise $\left|\bar{x}_{n}-\bar{x}_{0}\right|$ would have a constant positive value for infinitely many n] Also \bar{x}_{0} is the only limit point of S. Suppose there is a point $\bar{y} \in \mathbb{R}^{k}$ such that $\bar{y} \neq \bar{x}_{0}$ and
\bar{y} is a limit point of S. Consider

$$
\begin{aligned}
\left|\bar{y}-\bar{x}_{0}\right| & =\left|\bar{y}-\bar{x}_{n}+\bar{x}_{n}-\bar{x}_{0}\right| \\
& \leq\left|\bar{y}-\bar{x}_{n}\right|+\left|\bar{x}_{n}-\bar{x}_{0}\right| \\
-\left|\bar{y}-\bar{x}_{0}\right| & \geq-\left|\bar{y}-\bar{x}_{n}\right|-\left|\bar{x}_{n}-\bar{x}_{0}\right| \\
\Rightarrow\left|\bar{x}_{n}-\bar{y}\right| & \geq\left|\bar{y}-\bar{x}_{0}\right|-\left|x_{n}-x_{0}\right| \\
& >\left|\bar{y}-\bar{x}_{0}\right|-\frac{1}{n} \ldots \ldots .(1)
\end{aligned}
$$

Now as $\left|\bar{x}_{0}-\bar{y}\right|>0$ and $2 \in \mathbb{Z}^{+}$such that there exists an positive integer m such that $m\left|\bar{x}_{0}-\bar{y}\right|>2$ [By Archimedian principle]

$$
\begin{aligned}
& \Rightarrow n\left|\bar{x}_{0}-\bar{y}\right|>2 \forall n \geq m \\
& \Rightarrow \frac{1}{2}\left|\bar{x}_{0}-\bar{y}\right|>\frac{1}{n} \forall n \geq m \\
& \Rightarrow-\frac{1}{2}\left|\bar{x}_{0}-\bar{y}\right|<-\frac{1}{n} \\
& \text { By } \begin{aligned}
(1) \Rightarrow\left|\bar{x}_{n}-\bar{y}\right| & \geq\left|\bar{x}_{0}-\bar{y}\right|-\frac{1}{n} \\
& \geq\left|\bar{x}_{0}-\bar{y}\right|-\frac{1}{2}\left|\bar{x}_{0}-\bar{y}\right| \\
& =\frac{1}{2}\left|\bar{x}_{0}-\bar{y}\right|=r(\text { say }) \forall n \geq m
\end{aligned}
\end{aligned}
$$

$$
\therefore\left|\bar{x}_{n}-\bar{y}\right| \geq r \forall n \geq m
$$

(i.e.) There exists a neighbourhood \bar{y} such the neighbourhood contains only finite number of points of S, it is a contradiction to the assumption that \bar{y} is a limit point of $S . \therefore$ Our assumption is wrong. Hence \bar{y} is not a limit point of $S . \therefore S$ has only one limit point \bar{x}_{0} in \mathbb{R}^{k} and x_{0} is not in $E \Rightarrow S$ has no limit points in E. (i.e.) S is an infinite subset of E and it has no limit point in $E . \Rightarrow \Leftarrow$ hypothesis (c). $\therefore E$ is closed.

Theorem 1.62 Heine-Borel theorem: Any subset $E o f \mathbb{R}^{k}$ is closed and bounded iff E is compact.

Remark 1.63 The Heine-Borel theorem need not be true for any general metric space.

Example 1.64 Let X be an infinite set. Define a discrete metric d on X,

$$
d(p, q)= \begin{cases}0 & \text { if } p=q \\ 1 & \text { if } p \neq q\end{cases}
$$

Let A be any infinite subset of X. To prove: A is closed and bounded. Clearly, A is bounded in $X[\because d(p, q) \leq 1 \forall p, q \in A]$. Let $\{x\}$ be a subset
of X. Claim: $\{x\}$ is open in X. Choose $r=1$. Then, $N_{r}(x)=\{y \in$ $X \mid d(x, y)<r\}=\{y \in X \mid d(x, y)<1\}=\{x\}$. But every neighbourhood is open. $\therefore\{x\}$ is open. \therefore Every singleton set in the discrete metric set is open. Now, $A=\bigcup_{x \in A}\{x\} . \therefore A$ is open in $X . \therefore$ Every subset of X is open in $X \Rightarrow A^{c}$ subset of X is open in $X \Rightarrow A$ is closed in $X \therefore$ Every subset of a discrete metric space X is both open and closed. $A=\bigcup_{x \in A}\{x\} \Rightarrow\{\{x\} \mid x \in$ $A\}$ is a open cover for A but it has no finite subcover. $\therefore A$ is not compact. \therefore Heine-Borel theorem need not be true for any general metric space.

Theorem 1.65 Weistras theorem: Every bounded infinite subset of \mathbb{R}^{k} has a limit point in \mathbb{R}^{k}.
Proof: Let E be an infinite subset of $\mathbb{R}^{k} \Rightarrow E \subset I$ for some k-cell $I \subset \mathbb{R}^{k}$. But I is compact. By Bolzona Weistras property, E has a limit point in $I \subset \mathbb{R}^{k} \Rightarrow E$ has a limit point in \mathbb{R}^{k}.

Perfect Set:

Theorem 1.66 Let P be a non-empty perfect set in \mathbb{R}^{k}. Then P is uncountable.
Proof: Given P is a perfect set in $\mathbb{R}^{k} \Rightarrow P$ is closed and all the points of P are the limit point of $P \Rightarrow P$ is infinite $\Rightarrow P$ is either countable or uncountable. If P is countable then $P=\left\{\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n} \ldots\right\}$. We construct the sequence of neighbourhood $\left\{V_{n}\right\}$ by the method of induction on n. Let $V_{1}=\left\{\bar{y} \in \mathbb{R}^{k}| | \bar{y}-\bar{x}_{1} \mid<r\right\} ; \quad \bar{V}_{1}=\left\{\bar{y} \in \mathbb{R}^{k}| | \bar{y}-\bar{x}_{1} \mid \leq r\right\}$. Obviously, $V_{1} \cap P \neq \emptyset . \therefore$ Induction true for $n=1$. Since every point of P are the limit points, there exists a neighbourhood $V_{2}\left(\bar{x}_{2}\right)$ such that (i) $\bar{V}_{2} \subset V_{1}$, (ii) $\bar{x}_{1} \notin V_{2}$ and (iii) $V_{2} \cap P \neq \emptyset$. Suppose V_{n} has been constructed so that (i) $\bar{V}_{n} \subset V_{n-1}$, (ii) $\bar{x}_{n-1} \notin \bar{V}_{n}$ and (iii) $V_{n} \cap P \neq \emptyset$. Suppose every point of P are the limit points there exists a neighbourhood $V_{n+1}\left(\bar{x}_{n+1}\right)$ such that (i) $\bar{V}_{n+1} \subset V_{n}$, (ii) $\bar{x}_{n} \notin \bar{V}_{n+1}$ and (iii) $V_{n+1} \cap P \neq \emptyset . \therefore$ by proceeding we have the $\left\{V_{n}\right\}$ of neighbourhood. Put $K_{n}=\bar{V}_{n} \cap P \forall n \ldots . . .{ }^{*}$
$\bar{x}_{n} \notin \bar{V}_{n+1} \forall n \Rightarrow \bar{x}_{n} \notin K_{n+1}\left[K_{n+1}=\bar{V}_{n+1} \cap P\right] \Rightarrow$ no points of P lies in $\bigcap_{n=1}^{\infty} K_{n}$..
Now, $K_{n}=\bar{V}_{n} \cap P \Rightarrow K_{n} \subset P \forall n \Rightarrow \cap K_{n} \subset K_{n} \subset P \ldots \ldots$.....
From (1) and (2), $\cap K_{n}=\emptyset$
As \bar{V}_{n} is a subset of \mathbb{R}^{k} and \bar{V}_{n} is closed and bounded $\Rightarrow \bar{V}_{n}$ is compact. Now, P is closed $\Rightarrow \bar{V}_{n} \cap P$ is closed and $\bar{V}_{n} \cap P \subset \bar{V}_{n}$. (i.e.) $\bar{V}_{n} \cap \mathbb{R}^{k}$ is compact[*] and also $\bar{V}_{n+1} \subset V_{n} \subset \bar{V}_{n} \Rightarrow \bar{V}_{n+1} \cap P \subset \bar{V}_{n} \cap P \Rightarrow K_{n+1} \subset K_{n} \forall n . \therefore$ We have a $\left\{K_{n}\right\}$ of compact such that $K_{n} \supset K_{n+1} . \therefore$ by Theorem 1.55, $\cap K_{n} \neq \emptyset \Rightarrow \Leftarrow$ to (3). \therefore Our assumption is wring. $\therefore P$ is uncountable.

Corollary 1.67 Every $[a, b](a<b)$ is uncountable. In particular, the set of all real numbers is uncountable.
Proof: We know that, Every closed interval is perfect set in $\mathbb{R}^{1} \Rightarrow[a, b]$ is uncountable $\Rightarrow \mathbb{R}^{1}$ is uncountable.

Definition 1.68 The Cantor Set: Define the cantor set P and show that

1. P in non-empty.
2. P is closed and bounded.
3. P is compact.
4. P is perfect or dense in itself.
5. P contains no segment.

The construction of cantor set: The construction of cantor set shows that there exists a perfect sets in \mathbb{R}^{1} which contains no segment. Let $E_{0}=[0,1]$. Remove the segment $\left(\frac{1}{3}, \frac{2}{3}\right)$ from $[0,1]$ and Let $E_{1}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$. Remove the middle $3^{\text {rd }}$ of these intervals $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$. Let $E_{2}=\left[0, \frac{1}{9}\right] \cup$ $\left[\frac{2}{9}, \frac{3}{9}\right] \cup\left[\frac{6}{9}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right]$ and each interval is of length $=\frac{1}{9}$, continuing in this way, we obtain a sequence of compact sets
(a) $E_{0} \supset E_{1} \supset E_{2} \ldots$
(b) E_{n} is the union of 2^{n} intervals.
(i.e.) $E=\left[0, \frac{1}{3^{n}}\right] \cup\left[\frac{2}{3^{n}}, \frac{3}{3^{n}}\right] \cup \ldots \cup\left[\frac{3^{n}-3}{3^{n}}, \frac{3^{n}-2}{3^{n}}\right] \cup\left[\frac{3^{n}-1}{3^{n}}, 1\right]$ and each of length 3^{-n}. Let $P=\bigcap_{n=1}^{\infty} E_{n}$. The set P is called the cantor set.
Step 1: To prove: $P \neq \emptyset$. Since each E_{n} is closed and bounded and also $E_{n} \subset \mathbb{R}^{1}$ for each n. By Heine-Borel theorem each E_{n} is compact. \therefore We have $\left\{E_{n}\right\}$ of compact sets such that $E_{n} \supset E_{n+1} \forall n$. By Theorem 1.55, $\bigcap_{n=1}^{\infty} E_{n} \neq \emptyset \Rightarrow P \neq \emptyset$.
Step 2: To prove: P is closed and bounded. Since each E_{n} is closed and bounded. $\Rightarrow \bigcap_{n=1}^{\infty} E_{n}$ is closed and bounded. $\Rightarrow P$ is closed and bounded.
Step 3: To prove: P is compact. Now, $P \subset \mathbb{R}^{1}$ and P is closed and bounded. \therefore By Heine-borel theorem, P is compact.
Step 4: To prove: P is perfect. (i.e.) To prove P is closed and ever point of P are the limit points of P. By step 2, P is closed. Take $x \in P \Rightarrow$ $x \in \bigcap_{n=1}^{\infty} E_{n} \Rightarrow X \in E_{n} \forall n$. Let I_{n} be an interval of E_{n} which contains x. $\left[\because E_{n}\right.$ is the union of 2^{n} closed intervals $]$ Let S be any segment containing x. Choose n large enough so that $I_{n} \subset S$. Let x_{n} be an end point of I_{n} such that $x_{n} \neq x \Rightarrow x_{n} P$. Since end point of I_{n} should be the points of $P \Rightarrow x$ is a limit point of P. $[\because S \cap(P-\{x\}) \neq \emptyset]$ Since x is arbitrary, every point P are the limit points. $\therefore P$ is perfect.
Step 5: P is perfect $\Rightarrow P$ is uncountable.
Step 6: P contains no segment from the construction of the cantor set. Obviously P does not contain segment of the from $\left(\frac{3 k+1}{3^{m}}, \frac{3 k+2}{3^{m}}\right)$ \qquad (1) where $k, m \in Z^{+}$. Let (α, β) be any segment and if (α, β) contains a segment (1) only if $3^{-m}<\frac{\beta-\alpha}{6}$. But P does not contains the segments (1). $\therefore P$ does not contains the segments (α, β). Since (α, β) is arbitrary. $\therefore P$ contains no segment.

Connected Sets:

Definition 1.69 Separated Sets: Any two subsets A and B of a metric space X are said to be separated if $A \cap \bar{B}=\emptyset$ and $\bar{A} \cap B=\emptyset$.

Example 1.70 $A=(2,3), B=(3,4)$ and $C=(3,4)$. Then A and B are separated. $\bar{A}=[2,3] ; \bar{B}=[3,4] ; \bar{C}=[3,4]$. Now, $\bar{A} \cap B=[2,3] \cap(3,4)=$ $\emptyset ; A \cap \bar{B}=[2,3] \cap[3,4]=\emptyset . \therefore A$ and B are separated. $\bar{A} \cap C=[2,3] \cap[3,4]=$ $\{3\} \neq \emptyset \Rightarrow A$ and C are not separated.

Remark 1.71 1. Separated Sets are disjoint.

2. Disjoint Sets need not be separated.

Definition 1.72 Connected Sets: A set $E \subset X$ is said to be connected if E is not a union of two non-empty separated sets.

Theorem 1.73 A subset E of the real line \mathbb{R}^{1} is connected iff it has the following property. If $x \in E, y \in E$ and $x<z<y$ then $z \in E$ (or) Find all the connected subsets of the real line.
Proof: Suppose E is connected. To prove: If $x, y \in E, x<z<y$ then $x \in E[E$ is an interval $]$ Suppose there exists $x, y \in E$ and some $z \in(x, y)$ such that $z \notin E$. Then $E=A_{z} \cup B_{z}$ where $A_{z}=E \cap(-\alpha, z) ; B_{z}=$ $E \cap(z, \alpha) ; A_{z} \neq \emptyset ; B_{z} \neq \emptyset\left[\because x \in A_{z}\right.$ and $\left.x \in B_{z}\right]$. Now, $\bar{A}_{z} \cap B_{z}=$ $\emptyset ; A_{z} \cap \bar{B}_{z}=\emptyset . \quad \therefore A_{z}$ and B_{z} are non-empty separated sets. $A_{z} \cup B_{z}=$ $(E \cap(-\alpha, z)) \cup(E \cap(z, \alpha))=E \cap[(-\alpha, z) \cup(z, \alpha)]=E \cap\{R-\{z\}\}=E[z \notin E$ and $E \subset R-\{z\}] . \therefore E$ can be expressed as the union of two-non-empty separated sets. $\therefore E$ is not connected. This is a contradiction. Hence, if $\forall x \in E, y \in E$ and $x<z<y$ then $z \in E$. Conversely, Suppose if $\forall x \in E, y \in E$ and $x<z<y$. Then $z \in E$. \qquad
To prove: E is connected. Suppose E is not connected. $\Rightarrow E$ can be expressed as union of two non-empty separated sets. $\therefore E=A \cup B$ where A and B are two non-empty separated sets. Choose $x \in A, y \in B$ such that $x<y$. Now, $A \cap[x, y]$ is a set of real numbers and it is bounded above by y and also has a $\sup z$. (i.e.) $z=\sup (A \cap[x, y]) \Rightarrow z \in \overline{A \cap[x, y]} \subset \bar{A} \quad$ [by Theorem 7] $\Rightarrow z \in \bar{A} \Rightarrow z \notin B \quad[\because A \cap[x, y] \subset A] \because z=\sup (A \cap[x, y]) \Rightarrow z \geq \alpha \forall \alpha \in$ $A \cap[x, y]$. In particular $x \leq z, z \leq y$. But $z \notin B \therefore z<y \therefore x \leq z<y \ldots \ldots$. (2)
$x \in A, x<y$ there exists $z \notin B x<z<y$. Now, $z \in \bar{A} \Rightarrow z \in A \cup A^{\prime} \Rightarrow$ $z \in A$ or $z \in A^{\prime}$
Case (i): If $z \in A \Rightarrow z \notin \bar{B}[\because A \cap \bar{B}=\emptyset] \Rightarrow$ There exists a point z such that $z<z_{1}<y$ and $z_{1} \notin B$. Also $z_{1} \notin A\left[\because z_{1} \notin A, x<z_{1}<y\right.$ and $z_{1} \in(x, y) \subset[x, y] \Rightarrow z_{1} \in A \cap[x, y] \therefore z=\sup (A \cap[x, y])$ and $z_{1}>z \Rightarrow \Leftarrow$] $\therefore z_{1} \notin A \cup B \Rightarrow z_{1} \notin E \Rightarrow \Leftarrow$ to (1)
Case (ii): If z is not in A and $z \in A^{\prime} \therefore z$ is a limit point of A. Also
$x<z<y$ and $x, y \in E$. Since z is a limit point of $A, z \in \bar{A} \Rightarrow z \notin B[\because$ $\bar{A} \cap B=\emptyset] . \therefore \notin A$ and $z \notin B \Rightarrow z \notin A \cup B=E . \therefore z \notin E \Rightarrow \Leftarrow$ to (1) \therefore From case (i) and (ii) the contradiction shows that E is connected.

Problem 1.74 Let E^{\prime} be the set of all limit points of the set E. Prove that E^{\prime} is closed and also prove that E and \bar{E} have the same limit points, Do E and E^{\prime} always have the same limit point?
Proof: To prove: E^{\prime} is closed. Let $E^{\prime \prime}$ denoted the set of all limit points of E^{\prime}. It $E^{\prime \prime}=\emptyset$ then E^{\prime} is closed. Suppose $E^{\prime \prime} \neq \emptyset$. Let $x \in E^{\prime \prime} \Rightarrow x$ is a limit point of E^{\prime}. There exists $r>0$ such that $N_{r}(x)$ contains a point Y of E^{\prime} such that $Y \neq E^{\prime} \Rightarrow Y \in E^{\prime} \Rightarrow Y$ is a limit point of E. \Rightarrow Every neighbourhood of Y contains infinitely many points of $E . \Rightarrow$ Every neighbourhood of x contains infinitely many points if $E . \Rightarrow x$ is a limit point of $E . \Rightarrow x \in E^{\prime} \therefore$ $E^{\prime \prime} \subset E^{\prime} \therefore E^{\prime}$ contains all its limit points. E^{\prime} in closed. To prove: E and E^{\prime} have same limit points. (i.e.) To prove $E^{\prime}=\bar{E}^{\prime}$. Let $x \in E^{\prime} \Rightarrow x$ is a limit points of E. There exists $r>0, N_{r}(x)$ contains points Y of E such that $y \neq x \Rightarrow \forall r>0, N_{r}(x)$ contains Y of \bar{E} such that $y \neq x \Rightarrow x$ is a limit point of $\bar{E} . \Rightarrow x \in \bar{E}^{\prime} \therefore E^{\prime} \subseteq \bar{E}^{\prime} \ldots \ldots$. (1)
Let $x \in \bar{E}^{\prime} \Rightarrow x$ is a limit point of $\bar{E} . \Rightarrow x \in \bar{E}[\because \bar{E}$ is closed $] \Rightarrow x$ is a limit point of $E \cup E^{\prime} \Rightarrow \therefore x$ is a limit point of E (or) x is a limit point of $E^{\prime} \Rightarrow x \in E^{\prime}$ or $x \in E^{\prime \prime} \subseteq E^{\prime}\left[\because E^{\prime}\right.$ is closed $] \Rightarrow x \in E^{\prime} \therefore \bar{E}^{\prime} \subset E^{\prime} \ldots \ldots$ (2)
From (1) and (2), $E^{\prime}=\bar{E}^{\prime}$. To prove E and E^{\prime} need not have the same limit point. Let $E=\left\{0,1, \frac{1}{2}, \ldots\right\} ; E^{\prime}=\{0\}$. Then E has limit point $\{0\}$ only and E^{\prime} have the no limit point. $\therefore E$ and E^{\prime} need not have the same limit point.

Problem 1.75 Let $K \subset \mathbb{R}^{1}$ consists of numbers $0, \frac{1}{n},(n=1,2, \ldots)$. Prove that K is compact without using Heine-Borel theorem.
Proof: Let $\left\{G_{\alpha}\right\}$ be an open cover for K. \Rightarrow Now $0 \in K \Rightarrow 0 \in G_{\alpha_{1}}$ for some α_{1}. Since $G_{\alpha_{1}}$ is open there exists a neighbourhood $N_{\epsilon}(0) \subset G_{\alpha_{1}}$, $(-\epsilon, \epsilon) \subset G_{\alpha_{1}}$. By Archimedian Principle, there exists $m \in \mathbb{Z}^{+}$such that $m \cdot \epsilon>1 \Rightarrow n \cdot \epsilon \geq m \cdot \epsilon>1 \forall n \geq m \Rightarrow \frac{1}{n}<\epsilon \forall n \geq m \Rightarrow \frac{1}{n} \in$ $(-\epsilon, \epsilon) \forall n \geq m \Rightarrow 0$ and $\frac{1}{n} \in G_{\alpha_{1}} \forall n \geq m$. There exists $\alpha_{2}, \ldots, \alpha_{m}$ such that $\frac{1}{i-1} \in G_{\alpha_{i}}, i=1,2, \ldots, m \stackrel{n}{\Rightarrow} K \subset \bigcup_{i=1}^{n} G_{\alpha_{i}} . \therefore K$ is compact.

Problem 1.76 Given an example of an open cover of the segment $(0,1)$ which has no finite subcover (or) prove that $(0,1)$ are not compact.
Proof: Consider the family of open intervals $\mathcal{F}=\left\{\left.\left(\frac{1}{1+n}, n\right) \right\rvert\, n=1,2, \ldots\right\}$. Clearly \mathcal{F} is an open cover for $(0,1)$. (i.e.) $(0,1) \subset \cup_{n=1}^{\infty}(1 / 1+n, n)$. Also we cannot find any subcollection from \mathcal{F} covering $(0,1) \therefore$ The open cover \mathcal{F} has no finite subcover for $(0,1) \Rightarrow(0,1)$ is not compact.

Note 1.77 In general $(a, b) \subseteq \mathbb{R}^{1}$ is not compact. Since $\left\{\left.\left(a+\frac{1}{n+1}, b\right) \right\rvert\, n \in Y\right\}$ it is an open cover for (a, b) and it has no finite subcover covering (a, b). $\therefore(a, b)$ is not compact.

Example 1.78 Prove that: Set of all irrational is uncountable.
Proof: \mathbb{R} is uncountable (by Corollary 1.67) and also \mathbb{Q} is countable. If $\{$ irrational $\}$ is countable. $=\mathbb{Q} \cup\{$ irrational $\}=$ countable $\Rightarrow \Leftarrow$ to $(1) \therefore$ irrational is uncountable.

Example 1.79 Construct a bounded set of real numbers with exactly 3 limit points.
Proof: $E=\left\{1+\frac{1}{n}, 2+\frac{1}{n}, \left.3+\frac{1}{n} \right\rvert\, n \in N\right\} \subseteq \mathbb{R}$. It has exactly 3 limit points namely $1,2,3$. Since $X<5$ for all $x \in E \Rightarrow E$ is bounded.

Note $\left.\left.1.80 E=\left\{\frac{1}{n}\right\} \cup\left\{\frac{1}{n}+\frac{1}{m}\right\} \right\rvert\, m, n \in \mathbb{Z}^{+}\right\} \cup\{0\} \subseteq \mathbb{R}$. It is closed and bounded subset of $\mathbb{R}^{1} . \therefore E$ is compact.

Example 1.81 Let E° denote the set of all interior points of a set E.
(a) Prove that E° is always open.
(b) Prove that E is open iff $E=E^{\circ}$.
(c) If $G \subset E$ and G is open prove that $G \subset E^{\circ}$.
(d) Prove that the complement of E° is the closure of the complement of E^{c}. (i.e.) $E^{\circ^{c}}=\bar{E}^{c}$. Do E and \bar{E} always have the same interiors? Do E and E° always have same closure?
Proof: (a) Prove that E° is open. Let $x \in E^{\circ} \Rightarrow x$ is an interior point of $E . \Rightarrow$ There exists $r>0$ such that $N_{r}(x) \subset E$. Claim: $N_{r}(x) \subset E^{\circ}$. Let $y \in N_{r}(x) \Rightarrow$ There exists $S>0$ such that $N_{S}(y) \subset N_{r}(x) \subset E \cdot\left[\because N_{r}(x)\right.$ is open] $\Rightarrow y \in N_{S}(y) \subset E \Rightarrow y$ is an interior point of $E . \Rightarrow y \in E^{\circ} \Rightarrow$ $N_{r}(x) \subset E^{\circ} \therefore x$ is an interior point of E°. Since x is arbitrary. Every point of E° in an interior point. $\therefore E^{\circ}$ is open.
(b) Suppose E is open. To prove $E=E^{\circ} \Rightarrow E$ is open. Clearly, $E^{\circ} \subset E \because$ E is open, $E \subset E^{\circ} . \therefore E=E^{\circ}$. Conversely: $E=E^{\circ} \Rightarrow$ Every point of E is an interior point of $E . \Rightarrow E$ is open.

Convergent Sets

Numerical sequence and series:
Definition 1.82 Let X be a metric space. Let $F: N \rightarrow X$ be a function defined by $f(n)=p_{n}$. Then $p_{1}, p_{2}, \ldots, p_{n}$ is called sequence in X. Determined by the function F and it is denoted by $\left\{p_{n}\right\}$.

Definition $1.83\left\{p_{n}\right\}$ is said to converge to a point p in X if given $\epsilon>0$ there exists a positive integer N such that $d\left(p_{n}, p\right)<\epsilon \forall n \geq N$ and we write $p_{n} \rightarrow p$ as $n \rightarrow \infty$ or

$$
\lim _{n \rightarrow \infty} p_{n}=p
$$

If $\left\{p_{n}\right\}$ does not converge then $\left\{p_{n}\right\}$ diverges.
Definition 1.84 The set of all points $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ is called the range of the sequence $\left\{p_{n}\right\}$. The range set is either finite or infinite.

Definition 1.85 A sequence is said to be bounded. If its range is bounded.

Example 1.86

1. $S_{n}=\left\{\frac{1}{n}\right\} n=1,2, \ldots$ Clearly, $S_{n} \rightarrow 0 . \therefore\left\{S_{n}\right\}$ is a bounded sequences and the range S_{n} is infinite.
2. $\{n\}$ is not a convergent sequences. It is a divergent sequence. \therefore It is a unbounded sequences. \therefore range is infinite.
3. $S_{n}=i^{n}, n=1,2, \ldots$. This is not a convergent sequence. \therefore It is a divergent sequence. The range of S_{n} is finite. \therefore Sequence $\left\{S_{n}\right\}$ is bounded, range of $S_{n}=\{1,-1, i,-i\}$.

Theorem 1.87 Let $\left\{p_{n}\right\}$ be a sequence in a metric space X. Then,
(a) $\left\{p_{n}\right\}$ converges to $p \in S$. p iff every neighbourhood of p contains all but finitely many of the terms of sequence $\left\{p_{n}\right\}$.
(b) It $p \in X, p^{\prime} \in X$ and $\left\{p_{n}\right\}$ converges to p and p^{\prime} then $p=p^{\prime}$
(c) If $\left\{p_{n}\right\}$ converges then $\left\{p_{n}\right\}$ is bounded.
(d) $E \subset X$ and if p is limit points of E. Then there is a sequence $\left\{p_{n}\right\}$ in E such that

$$
p=\lim _{n \rightarrow \infty} p_{n}
$$

Proof: (a)Suppose $\left\{p_{n}\right\}$ converges to a point p. Let V be a neighbourhood of p. Since V is open, there exists $\epsilon>0$, such that $N_{\epsilon}(p) \subset V$. Since $\left\{p_{n}\right\}$ converges to p. Given $\epsilon>0$ there exists a positive integer N such that $d\left(p_{n}, p\right)<\epsilon \quad \forall n \geq N . \therefore p_{n} \in N_{\epsilon}(p) \quad \forall n \geq N \Rightarrow p_{n} \in N_{\epsilon}(p) \subset V$ $\forall n \geq N \Rightarrow p_{n} \in V \quad \forall n \geq N \Rightarrow V$ contains all but finitely many terms of the sequence $\left\{p_{n}\right\}$. Conversely, every neighbourhood of p contains all but finitely many points of sequences $\left\{p_{n}\right\}$. Fix $\epsilon>0, V=\{q \in X \mid d(p, q)<\epsilon\}$. Then V is a neighbourhood of p. By assumption, there exists N such that $p_{n} \in V \forall n \geq N \Rightarrow d\left(p, p_{n}\right)<\epsilon \forall n \geq N \Rightarrow p_{n} \rightarrow p \quad$ as $n \rightarrow \infty$.
(b) The limit of a convergent sequence is unique. Let $\epsilon>0$ be given let $p \neq p^{\prime}$ and $p_{n} \rightarrow p$ and $p_{n} \rightarrow p^{\prime} . \because p_{n} \rightarrow p$, there exists a positive integer N_{1} such that $d\left(p_{n}, p\right)<\epsilon / 2 \forall n \geq N_{1}$. As $p_{n} \rightarrow p^{\prime}$ there exists a positive integer N_{2} such that $d\left(p_{n}, p^{\prime}\right)<\epsilon / 2 \forall n \geq N_{2} ; N=m a \times\left\{N_{1}, N_{2}\right\}$. Now, $\forall n \geq N, d\left(p, p^{\prime}\right) \leq d\left(p, p_{n}\right)+d\left(p_{n}, p^{\prime}\right)<\epsilon / 2+\epsilon / 2=\epsilon$. Since ϵ is arbitrary, $d\left(p, p^{\prime}\right)=0 \Rightarrow p=p^{\prime}$.
(c) Every convergent sequences is bounded sequences. Suppose sequence $\left\{p_{n}\right\}$ converges to a point p. Then there exists a positive integer N such that $d\left(p_{n}, p\right)<1 \forall n \geq N$. Let $r=\max \left\{d\left(p_{1}, p\right), \ldots, d\left(p_{N}, p\right), 1\right\} \Rightarrow d\left(p_{n}, p\right)<r$ $\forall n \Rightarrow$ The range of sequence $\left\{p_{n}\right\}$ is bounded. $\Rightarrow\left\{p_{n}\right\}$ is bounded.
(d) Given that p is a limit point of the set $E . \Rightarrow$ For each there exists a neighbourhood $N_{1 / n}(p)$ contains a point p_{n} of E such that $p_{n} \neq p \therefore$ $d\left(p_{n}, p\right)<1 / n \forall n$. Given $\epsilon>0$ choose N such that $N \cdot \epsilon>1$. (i.e.) $N>1 / \epsilon$. It $n>N, d\left(p_{n}, p\right)<1 / n<1 / N<\epsilon \therefore d\left(p_{n}, p\right)<\epsilon \forall n>N \Rightarrow p_{n} \rightarrow p$ as $n \rightarrow \infty$.

Theorem 1.88 Suppose $\left\{S_{n}\right\}$ and $\left\{t_{n}\right\}$ are complex sequences and

$$
\lim _{n \rightarrow \infty} s_{n}=s, \lim _{n \rightarrow \infty} t_{n}=t
$$

Then,
1.

$$
\lim _{n \rightarrow \infty}\left(s_{n}+t_{n}\right)=s+t
$$

2.

$$
\lim _{n \rightarrow \infty}\left(c s_{n}\right)=c s, \lim _{n \rightarrow \infty}\left(c+s_{n}\right)=c+s \text { for any number } c .
$$

3.

$$
\lim _{n \rightarrow \infty} s_{n} t_{n}=s t
$$

4.

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{s_{n}}\right)=\frac{1}{s}\left(s_{n} \neq 0 \forall n, s \neq 0\right)
$$

Proof: (1) Given $\left\{s_{n}\right\}$ converges to s. Given $\epsilon>0$ there exists a positive integer n_{1} such that $\left|s_{n}-s\right|<\epsilon / 2 \quad \forall n \geq n_{1}$. As $\left\{t_{n}\right\}$ converges to t. Given ϵ there exists a positive integer n_{2} such that $\left|t_{n}-t\right|<\epsilon / 2$ $\forall n \geq n_{2}$. Let $N=\max \left\{n_{1}, n_{2}\right\} \Rightarrow\left|s_{n}+t_{n}-(s+t)\right|=\left|s_{n}-s+t_{n}-t\right| \leq$ $\left|s_{n}-s\right|+\left|t_{n}-t\right|<\epsilon / 2+\epsilon / 2=\epsilon \quad n \geq N \therefore s_{n}+t_{n} \rightarrow s+t$ as $n \rightarrow \infty$.
(2) Given $\left\{s_{n}\right\}$ converges to s. Let $\epsilon>0$ be given. Then there exists a positive integer N such that $\left|s_{n}-s\right|<\epsilon \forall n \geq N .\left|c+s_{n}-(s+c)\right|=\left|s_{n}-s\right|<$ $\epsilon \forall n \geq N . \therefore c+s_{n} \rightarrow c+s$ as $n \rightarrow \infty$. Now to prove $c s_{n} \rightarrow c s$ as $n \rightarrow \infty$. Case (i): $c \neq 0$. Given $s_{n} \rightarrow s$. Let $\epsilon>0$ be given. Then there exists a positive integer N such that $\left|s_{n}-s\right|<\frac{\epsilon}{|c|} \forall n \geq N,|c s-n-c s|=$ $|c|\left|s_{n}-s\right|<|c| \frac{\epsilon}{|c|}=\epsilon \forall n \geq N . \therefore c s_{n} \rightarrow c s$ as $n \rightarrow \infty$.
Case (ii): If $c=0$ then clearly $c s_{n} \rightarrow c s$.
(3) To prove: $s_{n} t_{n} \rightarrow$ st. Let $\epsilon>0$ be given. Given $s_{n} \rightarrow s \Rightarrow$ there exists positive integer n_{1} such that $\left|s_{n}-s\right|<\sqrt{\epsilon} \forall n \geq n_{1}$. As $t_{n} \rightarrow t \Rightarrow$ there exists positive integer n_{2} such that $\left|t_{n}-t\right|<\sqrt{\epsilon} \forall n \geq n_{2}, N=$ $\max \left\{n_{1}, n_{2}\right\} . \quad \therefore\left|\left(s_{n}-s\right)\left(t_{n}-t\right)\right|=\left|s_{n}-s\right|\left|t_{n}-t\right|<\sqrt{\epsilon} \sqrt{\epsilon}=\epsilon \quad \forall n \geq$ $N . \therefore\left(s_{n}-s\right)\left(t_{n}-t\right) \rightarrow 0$ as $n \rightarrow \infty$. Now,

$$
\begin{aligned}
s_{n} t_{n}-s t & =\left(s_{n}-s\right)\left(t_{n}-t\right)+s\left(t_{n}-t\right)+t\left(s_{n}-s\right) \\
\lim _{n \rightarrow \infty} s_{n} t_{n}-s t & =\lim _{n \rightarrow \infty}\left(s_{n}-s\right)\left(t_{n}-t\right)+\lim _{n \rightarrow \infty} s\left(t_{n}-t\right)+\lim _{n \rightarrow \infty} t\left(s_{n}-s\right) \\
& =0\left[\because s_{n}-s \rightarrow 0, t_{n}-t \rightarrow 0,\left(s_{n}-s\right)\left(t_{n}-t\right) \rightarrow 0\right] \\
\therefore \lim _{n \rightarrow \infty} s_{n} t_{n} & =s t .
\end{aligned}
$$

(4) Given that $\left\{s_{n}\right\}$ converges to s. Let $\epsilon>0$ be given. There exists a positive integer N_{1} such that

$$
\begin{aligned}
\left|s_{n}-s\right| & <\frac{|s|}{2} \forall n \geq N_{1} \\
\text { Always }\left|s_{n}-s\right| & \geq|s|-\left|s_{n}\right| \\
\Rightarrow \frac{|s|}{2} & >\left|s_{n}-s\right| \geq|s|-\left|s_{n}\right| \\
\Rightarrow \frac{|s|}{2} & >|s|-\left|s_{n}\right| \\
\Rightarrow|s|-\left|s_{n}\right| & <\frac{|s|}{2} \\
\Rightarrow|s|-\frac{|s|}{2} & <\left|s_{n}\right| \\
\Rightarrow \frac{|s|}{2} & <\left|s_{n}\right| \quad \forall n \geq N_{1}
\end{aligned}
$$

Now $s_{n} \rightarrow s \Rightarrow$ There exists a positive integer N_{2} such that $\left|s_{n}-s\right|<\epsilon \frac{|s|^{2}}{2}$ $\forall n \geq N_{2}$. Let $N=\max \left\{N_{1}, N_{2}\right\}$

$$
\begin{aligned}
\left|\frac{1}{s_{n}}-\frac{1}{s}\right| & =\frac{\left|s_{n}-s\right|}{\left|s_{n}\right||s|} \\
& <\epsilon \frac{|s|^{2}}{2} \cdot \frac{2}{|s||s|}\left[\because \frac{|s|}{2}<\left|s_{n}\right|\right] \\
& =\epsilon \forall n \geq N \\
& \Rightarrow \frac{1}{s_{n}} \rightarrow \frac{1}{s} \text { as } n \rightarrow \infty
\end{aligned}
$$

Theorem 1.89 1. Suppose $\bar{x}^{n} \in \mathbb{R}^{k},(n=1,2, \ldots)$ and $\bar{x}_{n}=\left\{\alpha_{1, n}, \alpha_{2, n}, \ldots, a_{k, n}\right\}$. Then $\left\{\bar{x}_{n}\right\}$ converges to $\bar{x}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \Leftrightarrow$

$$
\lim _{n \rightarrow \infty} \alpha_{j, n}=\alpha_{j}, \quad 1 \leq j \leq k
$$

2. Suppose $\left\{\bar{x}_{n}\right\},\left\{\bar{y}_{n}\right\}$ are sequences in $\mathbb{R}^{k},\left\{\beta_{n}\right\}$ is a sequence of real numbers and $\bar{x}_{n} \rightarrow \bar{x}, \bar{y}_{n} \rightarrow \bar{y}, \beta_{n} \rightarrow \beta$. Then,

$$
\lim _{n \rightarrow \infty}\left(\bar{x}_{n}+\bar{y}_{n}\right)=\bar{x}+\bar{y} \text { and } \lim _{n \rightarrow \infty} \beta_{n} \bar{x}_{n}=\beta \bar{x}
$$

Proof: (1) Suppose $\bar{x}_{n} \rightarrow \bar{x}$. Given $\epsilon>0$ there exists a positive integer
N such that $\left|\bar{x}_{n}-\bar{x}\right|<\epsilon \forall n \geq N$

$$
\begin{gathered}
\Rightarrow \sqrt{\sum_{j=1}^{k}\left(\alpha_{j, n}-\alpha_{j}\right)^{2}}<\epsilon \forall n \geq N \\
\Rightarrow \sum_{j=1}^{k}\left(\alpha_{j, n}-\alpha_{j}\right)^{2}<\epsilon^{2} \forall n \geq N \\
\Rightarrow\left(\alpha_{j, n}-\alpha_{j}\right)^{2}<\sum_{j=1}^{k}\left(\alpha_{j, n}-\alpha_{j}\right)^{2}<\epsilon^{2} \forall n \geq N \\
\Rightarrow\left|\alpha_{j, n}-\alpha_{j}\right|<\epsilon \forall n \geq N, 1 \leq j \leq k \\
\therefore \lim _{n \rightarrow \infty} \alpha_{j, n}=\alpha_{j} \quad 1 \leq j \leq k
\end{gathered}
$$

Conversely, Suppose

$$
\lim _{n \rightarrow \infty} \alpha_{j, n}=\alpha_{j}, \quad(1 \leq j \leq k)
$$

Let $\epsilon>0$ be given, there exists a positive integer N_{j} such that $\left|\alpha_{j, n}-\alpha_{j}\right|<$ $\epsilon / \sqrt{k} \quad \forall n \geq N_{j}$. Let $N=\max \left\{N_{1}, N_{2}, \ldots, N_{k}\right\}$.

$$
\begin{aligned}
& \Rightarrow\left|x_{n}-\bar{x}\right|=\sqrt{\sum_{j=1}^{k}\left(\alpha_{j, n}-\alpha_{j}\right)^{2}} \\
&<\sqrt{\sum_{j=1}^{k}(\epsilon / \sqrt{k})^{2} \forall n \geq N} \\
&<\sqrt{k \epsilon^{2} / k}=\sqrt{\epsilon^{2}} \\
&=\epsilon \forall n \geq N \\
& \therefore\left|x_{n}-\bar{x}\right|<\epsilon \forall n \geq N \\
& \therefore\left(\bar{x}^{n}\right) \rightarrow \bar{x} \text { as } n \rightarrow \infty .
\end{aligned}
$$

(2) Given $\bar{x}_{n} \rightarrow \bar{x}$ and $\bar{y}_{n} \rightarrow \bar{y}$ as $n \rightarrow \infty \Rightarrow \alpha_{j, n} \rightarrow \alpha_{j} ; \gamma_{j, n} \rightarrow \gamma_{j}$ as $n \rightarrow$ $\infty, 1 \leq j \leq k$ where $\bar{x}_{n}=\left(\alpha_{1, n}, \alpha_{2, n}, \ldots, \alpha_{k, n}\right) ; \bar{y}_{n}=\left(\gamma_{1, n}, \gamma_{2, n}, \ldots, \gamma_{k, n}\right) ; \bar{x}=$ $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ and $\bar{y}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right)$. Now $\alpha_{j, n}+\gamma_{j, n} \rightarrow \alpha_{j}+\gamma_{j}$ as $n \rightarrow$ $\infty, j=1$ to $k \Rightarrow \bar{x}_{n}+\bar{y}_{n} \rightarrow \bar{x}+\bar{y}$ as $n \rightarrow \infty$ (by (1)). Given $\beta_{n} \rightarrow \beta, \bar{x}_{n} \rightarrow \bar{x}$ as $n \rightarrow \infty \Rightarrow \beta_{n} \rightarrow \beta, \alpha_{j, n} \rightarrow \alpha_{j}$ as $n \rightarrow \infty \forall j \Rightarrow \beta_{n} \alpha_{j, n} \rightarrow \beta \alpha_{j}$ as $n \rightarrow \infty \forall j \Rightarrow \beta_{n} \bar{x}_{n} \rightarrow \beta \bar{x}$ as $n \rightarrow \infty$. (by using (1))

Definition 1.90 Subsequences: Given a sequence $\left\{p_{n}\right\}$ consider a $\left\{n_{k}\right\}$ of positive integers such that $n_{1}<n_{2}<n_{3} \cdots$. Then the sequence $\left\{p_{n_{i}}\right\}$ is called a subsequence of $\left\{p_{n}\right\}$

Note 1.91 If $\left\{p_{n_{i}}\right\}$ converges, its limit is called subsequencial limit of $\left\{p_{n}\right\}$.

Theorem 1.92

1. If $\left\{p_{n}\right\}$ is a sequence in a compact metric space X. Then some subsequence of $\left\{p_{n}\right\}$ converges to a point of X.
2. Every bounded sequence in \mathbb{R}^{k} contains converges subsequence.

Proof: (1)Let $E=$ Range of $\left\{p_{n}\right\}$.
Case (i): Suppose E is finite. Then there is a point p in E and a sequence $\left\{n_{i}\right\}$ with $n_{1}<n_{2}<n_{3} \cdots$ such that $p_{n_{1}}=p_{n_{2}}=\cdots=p$. The subsequence $\left\{p_{n}\right\}$ so obtained converges to p.
Case (ii): Suppose E is infinite. $\Rightarrow E$ is an infinite subset of a compact metric space $X . \Rightarrow E$ has a limit point p in X. [Theorem 1.57] Choose $n_{1}, d\left(p, p_{n_{1}}\right)<1$. Choose $n_{2}<n_{1}$, such that $d\left(p, p_{n_{2}}\right)<1 / 2$. Having chosen $n_{1}, n_{2}, \ldots, n_{i-1}$, there exists an integer $n_{i}>n_{i-1}$ such that $d\left(p, p_{n_{i}}<1 / i\right)(\because$ every neighbourhood of p contains infinite many point of E). Choose $\epsilon>0$ such that there exists a positive integer N such that $\epsilon N>1$ (Archimedean principle) (i.e.) $N>1 / \epsilon$. Then for every $i>N, d\left(p, p_{n_{i}}\right)<1 / i<1 / N<$ $\epsilon \forall i>N \Rightarrow\left\{p_{n_{i}}\right\} \rightarrow p$.
(b) Let $\left\{p_{n}\right\}$ be a bounded sequence in $\mathbb{R}^{k} . \Rightarrow$ Range of $\left\{p_{n}\right\}$ is bounded. Range of $\left\{p_{n}\right\}$ is a subset of some K-cell I. As I is compact, by (a) since I compact, $\left\{p_{n}\right\}$ contains a convergent subsequence in $I \subset \mathbb{R}^{k} . \Rightarrow$ Every bounded sequence in \mathbb{R}^{k} has a convergence subsequence.

Definition 1.93 Cauchy Sequence: A sequence $\left\{p_{n}\right\}$ in a metric space X is said it to be a Cauchy sequences, if for every $\epsilon>0$ there is an integer N such that $d\left(p_{n}, p_{m}\right)<\epsilon \forall n, m \geq N$.

Definition 1.94 Diameter: If $E \subset X$ and $S=\{d(a, b) \mid a, b \in E\}$ then the diameter of $E=\sup S$ (i.e.) $\operatorname{dia}(E)=\sup \{d(a, b) \mid a, b \in E\}$.

Note 1.95 If $\left\{p_{n}\right\}$ is a sequence in X, and $E_{N}=\left\{p_{N}, p_{N+1}, \ldots\right\}$ and p_{n} is a Cauchy sequence in X iff

$$
\lim _{N \rightarrow \infty} \operatorname{dia}\left(E_{N}\right)=0 \text { or } \operatorname{dia}\left(E_{N}\right) \rightarrow 0 \text { as } N \rightarrow \infty
$$

Theorem 1.96 1. If \bar{E} is the closure of the set E in a metric space X, then $\operatorname{dia}(\bar{E})=\operatorname{dia}(E)$.
2. If $\left\{k_{n}\right\}$ is a sequence of compact sets such that $k_{n} \supset k_{n+1},(n=1,2, \ldots)$ and if

$$
\lim _{n \rightarrow \infty} \operatorname{dia}\left(k_{n}\right)=0, \quad \text { then } \bigcap_{n=1}^{\infty} k_{n}
$$

contains exactly one point.

Proof: (1) Since $E \subset \bar{E}$, diameter $E \leq$ diameter \bar{E}. Fix $\epsilon>0, p, q \in \bar{E}$ by the definition of \bar{E}, these are points $p^{\prime}, q^{\prime} \in E$ such that $d\left(p, p^{\prime}\right)<\epsilon$ and $d\left(q, q^{\prime}\right)<\epsilon$. Now,

$$
\begin{aligned}
d(p, q) & \leq d\left(p, p^{\prime}\right)+d\left(p^{\prime}, q^{\prime}\right)+d\left(q^{\prime}, p\right) \\
& \leq d\left(p^{\prime}, q^{\prime}\right)+\epsilon+\epsilon \\
& =d\left(p^{\prime}, q^{\prime}\right)+2 \epsilon
\end{aligned}
$$

Since ϵ is arbitrary, $d(p, q)<d\left(p^{\prime}, q^{\prime}\right) \Rightarrow d(p, q)<d\left(p^{\prime}, q^{\prime}\right)<\sup d\left(p^{\prime}, q^{\prime}\right)=$ $\operatorname{dia}(E) \Rightarrow d(p, q)<\operatorname{dia}(E) \forall p, q \in \bar{E}$. Taking sup, we get $\operatorname{dia} \bar{E}<\operatorname{dia}(E) . \therefore$ $\operatorname{dia}(E)=\operatorname{dia}(\bar{E})$.
(2)Let $K=\bigcap_{n=1}^{\infty} K_{n} \Rightarrow K$ is non-empty. (by Theorem 1.58). To prove: K contains exactly one point. Suppose K contains more than one point, then $\operatorname{dia}(K)>0$. Also $K \subset K_{n} \forall n \Rightarrow 0<\operatorname{dia}(K)<\operatorname{dia}\left(K_{n}\right) \forall n \Rightarrow 0<$ $\operatorname{dia}\left(K_{n}\right)=0 \Rightarrow \Leftarrow$

$$
\lim _{n \rightarrow \infty} \operatorname{dia}\left(K_{n}\right)=0
$$

$\therefore K$ contains exactly one point.
Theorem 1.97 A subsequential limit of $\left\{p_{n}\right\}$ in a metric space X form a closed subset of X.
proof: Let E^{*} be the set of all subsequential limits of $\left\{p_{n}\right\}$ and let q be a limit point of E^{*}. To prove: $q \in E^{*}$ Choose n_{1} so $p_{n_{1}} \neq q$. (If no such n_{1} exists, E^{*} has only one point and there is nothing to prove) Put $S=d\left(p_{n_{1}}, q\right)$. Choose $n_{2}>n_{1}$ such that $d\left(p_{n_{2}}, q\right)<\frac{S}{2}$ and $p_{n_{2}} \neq q(\because q$ is a limit point). Suppose $n_{1}, n_{2}, \ldots, n_{i-1}$ are chosen. Since q is a limit point, there exists $x \in E^{*}$ such that $d(x, q)<\frac{S}{2^{i}}$. Since $x \in E^{*}$ there exists an $n_{i}>n_{i-1}$ with

$$
\begin{aligned}
d\left(p_{n_{i}}, x\right) & <\frac{S}{2^{i}} \\
d\left(p_{n_{i}}, q\right) & <d\left(p_{n_{i}}, x\right)+d(x, q) \\
& <\frac{S}{2^{i}}+\frac{S}{2^{i}}=\frac{S}{2^{i-1}} \\
\text { (i.e. }) d\left(p_{n_{i}}, q\right) & <\frac{S}{2^{i-1}}
\end{aligned}
$$

\Rightarrow (i.e.) we get a subsequence $\left\{p_{n_{i}}\right\}$ of $\left\{p_{n}\right\}$ such that $p_{n_{i}}$ converges to $q \Rightarrow q$ is a subsequential limit of $\left\{p_{n}\right\} \Rightarrow q \in E^{*}$. Since q is arbitrary, E^{*} contains all its limit points. $\therefore E^{*}$ is closed.

Theorem 1.98 (a) In any metric space X, every convergent sequences is a Cauchy sequence.
(b) If X is a compact metric space and if $\left\{p_{n}\right\}$ is a Cauchy sequence in X,
then $\left\{p_{n}\right\}$ converges to some point of X.
(c) In \mathbb{R}^{k}, every Cauchy sequence converges.

Proof: (a) Let $\left\{p_{n}\right\}$ be a sequence in X such that $\left\{p_{n}\right\}$ converges to p. Given $\epsilon<0$ there exists a positive integer N such that $\left(d_{p_{n}}, p\right)<\epsilon / 2 \forall n \geq$ N. Now, $\forall n, m \geq N, d\left(p_{n}, p_{m}\right) \leq d\left(p_{n}, p\right)+d\left(p, p_{m}\right)<\epsilon / 2+\epsilon / 2=\epsilon \forall n, m \geq$ $N . \therefore\left\{p_{n}\right\}$ is Cauchy sequence in X.
(b) Let $\left\{p_{n}\right\}$ be a Cauchy sequence in a compact metric space X. For each $N=1,2,3 \ldots, E_{N}=\left\{p_{N}, p_{N+1}, \ldots\right\}$. Also $\left\{p_{n}\right\}$ is Cauchy sequence \Rightarrow diam $E_{N} \rightarrow 0$ as $N \rightarrow \infty \Rightarrow \operatorname{diam} \bar{E}_{N} \rightarrow 0$ as $N \rightarrow \infty\left[\because \operatorname{diam} E_{N}=\operatorname{diam} \bar{E}_{N}\right.$ by Theorem 1.96]. Now \bar{E}_{N} is a closed subset of a compact metric space $X \Rightarrow \bar{E}_{N}$ is compact and also $\bar{E}_{N+1} \subset \bar{E}_{N}$ for each N. By Theorem 1.96, $\bigcap_{n=1}^{\infty} \bar{E}_{n}$ contains exactly one point, p (say) in $X . p \in \bar{E}_{N}$ for each N. Since $\operatorname{diam} \bar{E}_{N} \rightarrow 0$ as $N \rightarrow \infty$. Given $\epsilon>0$ there exists an integer N_{0} such that $\operatorname{diam} \bar{E}_{N}<\epsilon \forall N \geq N_{0} \Rightarrow d(p, q)<\epsilon \forall q \in \bar{E}_{N} \forall N \geq N_{0}$. In particular, $d(p, q)<\epsilon \forall q \in \bar{E}_{N_{0}} \Rightarrow d\left(p, p_{n}\right)<\epsilon \forall n \geq N_{0} . \therefore\left\{p_{n}\right\}$ converges to a point in X.
(c) Let $\left\{p_{n}\right\}$ be Cauchy sequence in \mathbb{R}^{k}. Let $E_{N}=\left\{p_{N}, p_{N+1}, \ldots\right\}$. Since $\left\{p_{n}\right\}$ is a Cauchy sequence $\Rightarrow \operatorname{diam} E_{N} \rightarrow 0$ as $N \rightarrow \infty \Rightarrow \operatorname{diam} E_{N}<1$ for some N. Let E be the range of the sequence $\left\{p_{n}\right\} \Rightarrow E=\left\{p_{1}, p_{2} \ldots p_{N_{1}}\right\} \cup E_{N}$. As E_{N} is bounded and $\left\{p_{1}, p_{2}, \ldots, p_{N-1}\right\}$ is a finite set. $\therefore E$ is bounded set in $\mathbb{R}^{k} . \Rightarrow\left\{p_{n}\right\}$ is bounded in \mathbb{R}^{k}. By Heine-Borel theorem E has a compact closure in \mathbb{R}^{k}. (i.e.) \bar{E} is compact in $\mathbb{R}^{k} . \Rightarrow\left\{p_{n}\right\}$ is a Cauchy sequence in \bar{E} and \bar{E} is compact. By (b), $\left\{p_{n}\right\}$ converges to a point in $\bar{E} \subset \mathbb{R}^{k} \Rightarrow$ Every Cauchy sequence in \mathbb{R}^{k} converges.

Definition 1.99 Complete metric space: A metric space X is said to be complete metric space if every Cauchy sequence in X converges to a point in X.

Example 1.100 (i) \mathbb{R}^{k} is complete.
(ii) Every compact metric space is complete.

Theorem 1.101 Every closed subset E of a complete metric space x is complete.
Proof: Given that E is closed subset of a complete metric space x. To prove: E is complete. Let $\left\{x_{n}\right\}$ be a Cauchy Sequence in $E \Rightarrow\left\{x_{n}\right\}$ is a Cauchy Sequence in x. Given that x is complete. $\Rightarrow\left\{x_{n}\right\}$ converges to a point x in $x . \Rightarrow$ Every neighbourhood of x contains all but finitely many terms of $\left\{x_{n}\right\} . \Rightarrow$ Every neighbourhood of x contains a point of $\left\{x_{n}\right\}$ other than $x . \quad\left[\because x_{n} \neq x\right] \Rightarrow N_{r}(x) \cap E-\{x\} \neq \emptyset \forall r>0 \Rightarrow x$ is a limit point of $E . \Rightarrow x \in E \quad[\because E$ is closed $] \Rightarrow\left\{x_{n}\right\}$ converges to x and $x \in E . \therefore E$ is complete.

Definition 1.102 A sequence $\left\{s_{n}\right\}$ of real numbers is said it to be monotonic increasing if $s_{n} \leq s_{n+1}(\forall n=1,2, \ldots)$ and monotonic decreasing if $s_{n} \geq s_{n+1}(\forall n=1,2, \ldots)$.

Note 1.103 $A\left\{s_{n}\right\}$ is said it to be monotonic if it is monotonic increasing or monotonic decreasing.

Theorem 1.104 Suppose $\left\{s_{n}\right\}$ is monotonic then the $\left\{s_{n}\right\}$ converges iff it is bounded.
Proof: Suppose $\left\{s_{n}\right\}$ converges $\Rightarrow\left\{s_{n}\right\}$ is bounded.(by Theorem 1.87) Conversely, suppose $\left\{s_{n}\right\}$ is bounded. Let E be the range of the sequence $\left\{s_{n}\right\}$ and Let s is least upper bound of E. For every $\epsilon>0$, there exists an integer N such that $s-\epsilon<s_{N} \leq s \Rightarrow s-\epsilon<s_{n} \leq s \quad(\forall n \geq N)\left(\because s_{n}\right.$ is monotonic) (If not $s-\epsilon$ would be an upper bound) $\Rightarrow s-\epsilon<s_{n} \leq s<s+\epsilon$ $\forall n \geq N \Rightarrow s-\epsilon<s_{n} \leq s+\epsilon \Rightarrow\left|s_{n}-s\right|<\epsilon \forall n \geq N \Rightarrow s_{n} \rightarrow s$ as $n \rightarrow \infty$

Upper and Lower bounds

Definition 1.105 Let $\left\{s_{n}\right\}$ be a sequence of real numbers with the following properties

1. For ever real number M, there is an integer N such that $s_{n} \geq M \forall n \geq$ N then we write $s_{n} \rightarrow \infty$.
2. $\forall M$, there is an integer N such that $s_{n} \leq M, \forall n \geq N$, then we write $s_{n} \rightarrow-\infty$.

Definition 1.106 Let s_{n} be a sequence of real numbers, E be the set of numbers x (in extended real number system such that $s_{n_{k}} \rightarrow x$ for all sub sequences $\left\{s_{n_{k}}\right\}$. The set E contains all subsequential limits defined above, plus possible, the number α to $-\alpha$. Let $s^{*}=\sup E$ and $s_{*}=\inf E$.

Theorem 1.107 Let $\left\{s_{n}\right\}$ be a sequence of real numbers. E and s^{*} as defined above. Then s^{*} has the following properties.
(a) $s^{*} \in E$
(b) If $x>s^{*}$ then there is an integer N such that $n>N \Rightarrow s_{n}<x$

Moreover s^{*} is the only number with the properties $(a)+(b)$. This result is true for s_{*} also.
Proof:(a) Case (i): Suppose $s^{*}=\infty$. Since $\sup E=\infty, E$ is not bounded above. Then $\left\{s_{n}\right\}$ is not bounded above and there is a subsequence $\left\{s_{N_{k}}\right\}$ which converges to $\infty . \therefore \infty$ is a subsequential limit. Hence $\infty \in E$. (i.e.) $s^{*} \in E$.
Case (ii): Suppose s^{*} is real. Then E is bounded above. \therefore atleast one subsequential limit exists say $\lambda \in E . \Rightarrow E$ is non-empty. $\therefore E$ is a nonempty set of real numbers and bounded above also $s^{*}=\sup E \Rightarrow s^{*} \in \bar{E}$ [by Theorem 1.41$] \Rightarrow s^{*} \in E$ [since by Theorem $1.40 E$ is closed $\Leftrightarrow E=\bar{E}$] Case (iii): Suppose $s^{*}=-\infty \Rightarrow E$ contains only one element namely $(-\infty)$ and there is no subsequential limits. \Rightarrow For any real numbers $s_{n}>m$ for atmost finite number of values of n. ((i.e.) $s_{n} \leq N \forall n \geq N$ for some integer N) so that $s_{n} \rightarrow-\infty . \therefore s^{*}=-\infty \in E \therefore$ From all the three cases
$s^{*} \in E$.
(b) Suppose there is a number $x>s^{*}$ such that $s_{n} \geq x$ for infinitely many values of $n . \Rightarrow$ There exists a number $y \in E$ such that $y \geq x>s^{*} \Rightarrow \Leftarrow$ to s^{*} is the supremum of $E \Rightarrow s_{n}<x$ for all $n \geq N_{1}$ for some integer N. Uniqueness: Suppose there are two numbers p and q satisfy both (a) and (b) such that $p \neq q$. Without loss of generality $p<q$. Choose x such that $p<x<q$. If $x>p$, then by (b) there exists a integer N such that $s_{n}<x<q \forall n \geq N \Rightarrow q$ is not in $E \Rightarrow q$ cannot satisfy the property (a). $\therefore s^{*}$ is unique.

Theorem 1.108 If $s_{n} \leq t_{n} \forall n \geq N, N$ is fixed, then

$$
\lim _{n \rightarrow \infty} \inf s_{n} \leq \lim _{n \rightarrow \infty} \inf t_{n} \text { and } \lim _{n \rightarrow \infty} \sup s_{n} \leq \lim _{n \rightarrow \infty} \sup t_{n}
$$

Proof: Given $s_{n} \leq t_{n} \forall n \geq N \Rightarrow \inf s_{n} \leq t_{n} \quad \forall n \geq N$. Therefore $\inf s_{n} \leq t_{n} \quad \forall n \geq N \Rightarrow$

$$
\lim _{n \rightarrow \infty} \inf s_{n} \leq \lim _{n \rightarrow \infty} \inf t_{n}
$$

Similarly, $s_{n} \leq t_{n} \forall n \geq N \Rightarrow s_{n} \leq \sup t_{n} \forall n \geq N \Rightarrow \sup s_{n} \leq \sup t_{n} \Rightarrow$

$$
\lim _{n \rightarrow \infty} \sup s_{n} \leq \lim _{n \rightarrow \infty} \sup t_{n}
$$

Remark 1.109 Sandwitch number: For $0 \leq x_{n} \leq s_{n} \forall n \geq N$ and if $s_{n} \rightarrow 0$ then $x_{n} \rightarrow 0$.

Theorem 1.110 Some Special Sequences:

(a) If $p>0$ then

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0 .
$$

(b) If $p>0$ then

$$
\lim _{n \rightarrow \infty} \sqrt[n]{p}=1
$$

(c)

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=1
$$

(d) If $p>0, \alpha$ is real then

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{(1+p)^{n}}=0
$$

(e) If $|x|<1$ then

$$
\lim _{n \rightarrow \infty} x^{n}=0
$$

Proof: (a) Given $p>0$ there exists an integer N such that $N>\frac{1}{\epsilon^{1 / p}}$. Now, $\left|\frac{1}{n^{p}}-0\right|=\left|\frac{1}{n^{p}}\right| \leq \frac{1}{N^{p}}<\epsilon[\because p<0]$.
(b) Case (i): Suppose $p>1$. Let $x_{n}=\sqrt[n]{p}-1 \geq 0[\because p>1] . \therefore \sqrt[n]{p}=$ $1+x_{n} \Rightarrow p=\left(1+x_{n}\right)^{n}=1+n x_{n}+n_{c_{2}} x_{n}^{2}+. .+x_{n}^{n} \Rightarrow p \geq 1+n x_{n}\left[\because x_{n} \geq\right.$ $0] \Rightarrow p-1 \geq n x_{n} \Rightarrow 0 \leq x_{n} \leq \frac{p-1}{n}$. Since $\frac{p-1}{n} \rightarrow 0$ as $n \rightarrow \infty \Rightarrow x_{n} \rightarrow 0$ (by the above remark) \Rightarrow

$$
\begin{gathered}
\lim _{n \rightarrow \infty} x_{n}=0 \\
\Rightarrow \lim _{n \rightarrow \infty} \sqrt[n]{p}=0 \\
\Rightarrow \lim _{n \rightarrow \infty} \sqrt[n]{p}=1 \\
\Rightarrow(\sqrt[n]{p}) \rightarrow 1 \text { as } n \rightarrow \infty
\end{gathered}
$$

Case (ii): Suppose $p=1$. Then $\sqrt[n]{p}=1 \Rightarrow(\sqrt[n]{p})=1 \rightarrow 1$ as $n \rightarrow \infty$.
Case (iii): Suppose $0<p<1$. Now, $p<1 \Rightarrow 1 / p>1$. By Case (i) $\sqrt[n]{p} \rightarrow 1$ as $n \rightarrow \infty . \Rightarrow \frac{1}{\sqrt[n]{p}} \rightarrow 1$ as $n \rightarrow \infty . \Rightarrow \sqrt[n]{p} \rightarrow 1$ as $n \rightarrow \infty$.
(c)

$$
\lim _{n \rightarrow \infty} \sqrt[n]{n}=
$$

Let $x_{n}=\sqrt[n]{n}-1 \geq 0(\because n \geq 1) \Rightarrow \sqrt[n]{n}=1+x_{n} \Rightarrow n=\left(1+x_{n}\right)^{n}=$ $1+n x_{n}+n_{c_{2}} x_{n}^{2}+\ldots+x_{n}^{n}, n \geq n_{c_{2}} x_{n}^{2} \Rightarrow n \geq \frac{n(n-1)}{2} x_{n}^{2} \Rightarrow x_{n}^{2} \leq \frac{2}{n-1}$ $\forall n \geq 2 \Rightarrow 0 \leq x_{n} \leq \sqrt{\frac{2}{n-1}} \forall n \geq 2$. Now, $\sqrt{\frac{2}{n-1}}$ as $n \rightarrow \infty$. By the above remark $x_{n} \rightarrow 0$ as $n \rightarrow \infty . \therefore \sqrt[n]{n} \rightarrow 1$ as $n \rightarrow \infty$.
(d) Let k be any positive integer such that $k>\alpha$. Let $n>2 k$,

$$
\begin{aligned}
& (1+p)^{n}=1+n p+\frac{n(n-1)}{2} p^{2}+\ldots+n_{c_{k-1}} p^{k-1}+\ldots+p^{n} \\
& \geq n_{c_{k}} p^{k} \\
& =\frac{n(n-1) \cdots(n-(k-1))}{1 \cdot 2 \cdots k} p^{k} \\
& >\frac{\frac{n}{2} \frac{n}{2} \cdots \frac{n}{2}}{k!} p^{k} \\
& =\frac{n^{k}}{2^{k} k!} p^{k} \\
& >\frac{n^{k}}{2^{k}} \frac{p^{k}}{k!} \\
& \frac{1}{(1+p)^{n}}<\frac{2^{k}}{n^{k}} \frac{k!}{p^{k}} \\
& \frac{n^{\alpha}}{(1+p)^{n}}<\frac{2^{k} k!}{p^{k}} \frac{1}{n^{k-\alpha}} \\
& \Rightarrow 0 \leq \frac{n^{\alpha}}{(1+p)^{n}}<\frac{2^{k} k!}{p^{k}} \frac{1}{n^{k-\alpha}}
\end{aligned}
$$

Also $\frac{1}{n^{k-\alpha}} \rightarrow 0$ as $n \rightarrow \infty(\because k-\alpha>0$ by (a) $)$
By the above remark,

$$
\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{(1+p)^{n}}=0
$$

(e) $|x|<1 \Rightarrow \frac{1}{|x|}>1 \Rightarrow \frac{1}{|x|}=1+p, p>0$, put $\alpha=0$ in (d). We have $\frac{1}{(1+p)^{n}} \rightarrow 0$ as $n \rightarrow \infty \Rightarrow|x|^{n} \rightarrow 0$ as $n \rightarrow \infty \Rightarrow x^{n} \rightarrow 0$ as $n \rightarrow \infty$.

2. UNIT II

Series:

Let

$$
\sum_{n=1}^{\infty} a_{n}
$$

be a series and let

$$
s_{n}=a_{1}+a_{2}+. .+a_{n}=\sum_{n=1}^{\infty} a_{k}
$$

the nth partial sum of the series $\sum a_{n}$. we can form a sequence $\left\{s_{n}\right\}$ and this $\left\{s_{n}\right\}$ is called sequence of partial sum of the series.

Definition 2.1 If $\left\{s_{n}\right\} \rightarrow s$ as $n \rightarrow \infty$ then we write

$$
\sum_{n=1}^{\infty} a_{n}=s
$$

and the series $\sum a_{n}$ converges to $s . s$ is called sum of the series.
Note 2.2 1. If $\left\{s_{n}\right\}$ diverges then the series is said to diverge.
2. For convergence we shall consider the series of the form

$$
\sum_{n=0}^{\infty} \alpha_{n} .
$$

Theorem 2.3 A series of non-negative term converges iff its partial sum forms a bounded sequence.
Proof: Suppose $\sum a_{n}$ converges. $\Rightarrow\left\{s_{n}\right\}$ converges. $\Rightarrow\left\{s_{n}\right\}$ is bounded. (Theorem 1.85(c)). Conversely: Suppose $\left\{s_{n}\right\}$ is bounded. Then $\left\{s_{n}\right\}$ is monotonic increasing $\Rightarrow\left\{s_{n}\right\}$ converges. (Theorem 1.102) $\Rightarrow \sum a_{n}$ converges.

Theorem 2.4 Cauchy's Criterian: $\sum a_{n}$ converges iff $\forall \epsilon>0$, there exists an integer N such that

$$
\left|\sum_{k=n}^{m} a_{k}\right|<\epsilon \quad \text { if } m \geq n \geq N .
$$

Proof: Let $\sum a_{n}$ converges. Let $s_{n}=a_{1}+a_{2}+\ldots+a_{n} \Rightarrow\left\{s_{n}\right\}$ converges. $\Rightarrow\left\{s_{n}\right\}$ is Cauchy sequence. Given $\epsilon>0$ there exists an integer N such that $\left|s_{m}-s_{n}\right|<\epsilon \quad \forall m \geq n \geq N \Rightarrow$

$$
\left|\sum_{k=n}^{m} a_{k}\right|<\epsilon \forall m \geq n \geq N .
$$

Conversely, suppose

$$
\left|\sum_{k=n}^{m} a_{k}\right|<\epsilon \forall m \geq n \geq N \ldots . .(1)
$$

for all $\epsilon>0$ and for some integer N. To prove, $\sum a_{n}$ converges. (1) \Rightarrow $\left|s_{m}-s_{n}\right|<\epsilon \forall m \geq n \geq N$. Every Cauchy sequence converges. $\Rightarrow\left\{s_{n}\right\}$ converges. $\Rightarrow \sum a_{n}$ converges.

Theorem 2.5 If $\sum a_{n}$ converges, then

$$
\lim _{n \rightarrow \infty} a_{n}=0 .
$$

Proof: Given $\sum a_{n}$ converges. By Cauchy's criterian there exists N such that

$$
\begin{aligned}
& \quad\left|\sum_{k=n}^{m} a_{k}\right|<\epsilon \forall m \geq n \geq N \text {. Taking } m=n, \\
& \quad\left|a_{n}\right|<\epsilon \forall n \geq N \\
& \Rightarrow a_{n} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Note 2.6 Converse of the above theorem and need not be true. Consider $\{1 / n\}, 1 / n \rightarrow 0$ as $n \rightarrow \infty$. But $\sum 1 / n$ diverges.

Theorem 2.7 Comparison test:

(a) If $\left|a_{n}\right|<C_{n}$ for $n \geq N_{0}$ where N_{0} is some fixed integer and if $\sum C_{n}$ converges then $\sum a_{n}$ converges.
(b) If $a_{n} \geq d_{n} \geq 0 \quad \forall n \geq N_{0}$ and if $\sum d_{n}$ diverges then $\sum a_{n}$ also diverges.

Proof: (a) Given $\sum C_{n}$ converges. By Cauchy's criterion. Given $\epsilon>0$ there exists + ve integer $N \geq N_{0}$ such that

$$
\begin{aligned}
&\left|\sum_{k=n}^{m} a_{k}\right|<\epsilon \forall m \geq n \geq N . \\
& \text { Now }\left|\sum_{k=n}^{m} a_{k}\right| \leq \sum_{k=n}^{m}\left|a_{k}\right| \leq \sum_{k=n}^{m} C_{k}<\epsilon \forall m \geq n \geq N \\
& \therefore\left|\sum_{k=n}^{m} a_{k}\right|<\epsilon \forall m \geq n \geq N .
\end{aligned}
$$

$\therefore \sum a_{n}$ converges.
(b) Given $0 \leq d_{n} \leq a_{n} \quad n \geq N_{0}$. Suppose $\sum a_{n}$ converges. $\sum d_{n}$ converges by (a) $\Rightarrow \Leftarrow . \therefore \sum a_{n}$ diverges.

Series of non negative terms:

Theorem 2.8 If $0 \leq x<1$ then

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}, x \geq 1
$$

then the series diverges.
Proof: Let $\left\{s_{n}\right\}$ be a sequence of partial sum of the series $\sum x^{n}$. Suppose $0 \leq x \leq 1$
$s_{n}=1+x+x^{2}+\ldots+x^{n}=\frac{1-x^{n}}{1-x}$. Since $x^{n+1} \rightarrow 0$ as $n \rightarrow \infty$ if $0 \leq x<1$ (by Theorem $1.108(\mathrm{e})) \Rightarrow s_{n} \rightarrow \frac{1}{1-x}$ as $n \rightarrow \infty$ if $0 \leq x<1 \Rightarrow \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$. suppose $x=1, s_{n}=n+1 \Rightarrow\left\{s_{n}\right\}$ diverges. $\Rightarrow\left\{s_{n}\right\}$ unbounded diverges. $\therefore \sum x^{n}$ diverges. Suppose $x>1 \Rightarrow x^{n}>1 \Rightarrow \sum x^{n}>\sum 1(0 \leq 1<x) . \therefore$ $\sum 1$ is diverges. \therefore By comparison test. $\sum x^{n}$ diverges.

Theorem 2.9 Cauchy's condensation test: Suppose $a_{1} \geq a_{2} \geq \ldots \geq 0$ then the series

$$
\sum_{n=1}^{\infty} a^{n}
$$

converges iff

$$
\sum_{k=0}^{\infty} 2^{k} a_{2^{k}}=a_{1}+2 a_{2}+4 a_{4}+8 a_{8}+\ldots
$$

converges.
Proof: Let $s_{n}=a_{1}+a_{2}+\ldots+a_{n} ; t_{k}=a_{1}+2 a_{2}+\ldots+2^{k} a_{2}^{k}$.
Case (i): $n<2^{k}$

$$
\begin{aligned}
s_{n} & \leq a_{1}+\left(a_{2}+a_{3}\right)+\ldots+\left(a_{2^{k}}+a_{2^{k}+1}+\ldots+a_{2^{k+1}-1}\right) \\
& \leq a_{1}+2 a_{2}+\ldots+2^{k} a_{2^{k}} \\
& =t_{k} \\
s_{n} & \leq t_{k} \ldots . .(1)
\end{aligned}
$$

Case (ii): $n<2^{k}$

$$
\begin{aligned}
s_{n} & \geq a_{1}+a_{2}+\left(a_{3}+a_{4}\right)+. .+\left(a_{2^{k-1}+1}+\ldots+a_{2^{k}}\right) \\
& \geq \frac{a_{1}}{2}+a_{2}+2 a_{4}+\ldots+2^{k-1} a_{2^{k}} \\
2 s_{n} & \geq a_{1}+2 a_{2}+2^{2} a_{4}+. .+2^{k} a_{2^{k}}=t_{k} \\
2 s_{n} & \geq t^{k} \ldots . .(2)
\end{aligned}
$$

From (1) and (2), $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are either both bounded or both unbounded. (i.e.) $\left\{s_{n}\right\}$ is bounded $\Leftrightarrow\left\{t_{k}\right\}$ is bounded. $\Rightarrow \sum a_{n}$ converges. $\Leftrightarrow \sum 2^{k} a_{2^{k}}$ converges. (by Theorem 2.3)

Theorem $2.10 \sum \frac{1}{n^{p}}$ converges if $p>1$ and $\sum \frac{1}{n^{p}}$ converges if $p \leq 1$.
Proof: $\left\{\frac{1}{n}\right\}$ is a decreasing sequence. $\Rightarrow \frac{1}{n} \geq \frac{1}{n+1} \Rightarrow \frac{1}{n^{p}} \geq \frac{1}{(n+1)^{p}} \forall p>0$
Case (i): Suppose $p>0$. Consider the series

$$
\begin{aligned}
\sum_{k=0}^{\infty} 2^{k} a_{2^{k}} & =\sum_{k=0}^{\infty} 2^{k} \frac{1}{2^{k p}} \\
& =\sum_{k=0}^{\infty} 2^{k-k p} \\
& =\sum_{k=0}^{\infty} 2^{k(1-p)}
\end{aligned}
$$

By Theorem reft16, $\sum x^{k}$ converges if $0 \leq x<1$, diverges if $x \geq 1$. Now,

$$
\begin{aligned}
& \sum_{k=0}^{\infty} 2^{k(1-p)}=\sum_{k=0}^{\infty}\left(2^{1-p}\right)^{k} \text { converges if } p>1 \\
& \sum_{k=0}^{\infty}\left(2^{1-p}\right)^{k} \text { diverges if } p \leq 1
\end{aligned}
$$

Case (ii): If $p \leq 0$ then $\left\{\frac{1}{n^{p}}\right\}$ is an unbounded sequence $\Rightarrow\left\{\frac{1}{n^{p}}\right\}$ diverges. $\therefore \sum 1 / n^{p}$ diverges if $p \leq 0 . \therefore \sum \frac{1}{n^{p}}$ converges $p>1 . \sum \frac{1}{n^{p}}$ diverges $p \leq 1$.

Theorem 2.11 If $p>1$,

$$
\sum_{k=0}^{\infty} \frac{1}{n(\log n)^{p}}
$$

converges and if $p \leq 1$ this series diverges.
Proof: $\{\log n\}$ is an increasing sequence. $\Rightarrow \frac{1}{n(\log n)^{p}}$ is a decreasing sequence. Consider

$$
\begin{aligned}
\sum_{k=1}^{\infty} 2^{k} \frac{1}{2^{k}\left(\log 2^{k}\right)^{p}} & =\sum_{k=1}^{\infty} \frac{1}{(k \log 2)^{p}} \\
& =\frac{1}{(\log 2)^{p}} \sum_{k=1}^{\infty} \frac{1}{k^{p}}
\end{aligned}
$$

converges if $p>1$, diverges of $p \leq 1$. [By Theorem 2.10] By Cauchy's condensation test,

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}
$$

converges if $p>1$, diverges of $p \leq 1$.
Problem 2.12 Test the converges of the series

$$
\sum_{n=3}^{\infty} \frac{1}{n(\log n) \cdot \log (\log n)}
$$

Proof: $\{n \log n \log (\log n)\}$ is an increasing sequence. $\Rightarrow\left\{\frac{1}{n \log n \log (\log n)}\right\}$ is a decreasing sequence. Consider,

$$
\begin{aligned}
\sum_{k=2}^{\infty} 2^{k} a_{2^{k}} & =\sum_{k=2}^{\infty} 2^{k} \frac{1}{2^{k} \log 2^{k} \log \left(\log 2^{k}\right)} \\
& =\sum_{k=2}^{\infty} \frac{1}{k \log 2 \log (k \log 2)} \\
& =\frac{1}{\log 2} \sum_{k=2}^{\infty} \frac{1}{k \log (k \log 2)}
\end{aligned}
$$

Now

$$
\begin{aligned}
\log 2 & <1 \\
\Rightarrow k \log 2 & <k k>0 \\
\Rightarrow \log (k \log 2) & <\log k \\
\Rightarrow k \log (k \log 2) & <k(\log k) \\
\Rightarrow \frac{1}{k \log (k \log 2)} & >\frac{1}{k \log k} \\
\Rightarrow \sum_{k=2}^{\infty} \frac{1}{k \log (k \log 2)} & >\sum_{k=2}^{\infty} \frac{1}{k \log k}
\end{aligned}
$$

By previous problem put $p=1 \sum \frac{1}{k \log k}$ diverges. By comparison test $\sum \frac{1}{k \log (k \log 2)}$ diverges $\Rightarrow \frac{1}{\log 2} \sum \frac{1}{k \log (k \log 2)} . \quad \therefore$ By condensation test, the given sequence diverges.

Definition $2.13 e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots=\sum \frac{1}{n!}$.
Note 2.14 The above definition is well defined.
Proof: Now $e=\sum 1 / n$!. Let

$$
\begin{aligned}
s_{n} & =\sum_{k=0}^{n} \frac{1}{k!}=1+\frac{1}{1!}+\ldots+\frac{1}{n!} \\
& <1+\frac{1}{1^{2}}+\frac{1}{2^{1}}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n-1}} \\
& <1+\frac{1}{1^{2}}+\frac{1}{2^{1}}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{n}}+\ldots \\
& =1+\frac{1}{1-\frac{1}{2}} \\
& =1+\frac{1}{\frac{1}{2}}=1+2 \\
& =3 \\
\therefore s_{n} & <3 \forall n
\end{aligned}
$$

$\therefore\left\{s_{n}\right\}$ is a bounded sequence. Since $\left\{s_{n}\right\}$ is monotonic increasing and bounded, $\left\{s_{n}\right\}$ is converges. $\Rightarrow \sum \frac{1}{n!}$ converges. $\therefore e$ is well defined.

Theorem 2.15

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e . \text { Let } s_{n}=1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{n!} .
$$

Proof: Let

$$
\begin{aligned}
t_{n}= & \left(1+\frac{1}{n}\right)^{n} \\
= & 1+n \cdot \frac{1}{n}+\frac{n(n-1)}{2} \frac{1}{n^{2}}+\frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} \frac{1}{n^{3}}+\ldots \\
& +\frac{n(n-1) \cdots 2 \cdot 1}{1,2 \cdots n} \frac{1}{n^{n}} \\
= & 1+1+\frac{1\left(1-\frac{1}{n}\right)}{2}+\frac{1\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)}{1 \cdot 2 \cdot 3}+\ldots \\
& +\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{(n-2)}{n}\right)\left(1-\frac{\overline{n-1}}{n}\right) \frac{1}{n!} \ldots .(a) \\
< & 1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots+\frac{1}{n!} \\
= & s_{n} \\
\therefore t_{n}< & s_{n} \forall n \\
\lim _{n \rightarrow \infty} \sup t_{n}< & \lim _{n \rightarrow \infty} \sup S_{n}=e \ldots . .(1)\left[\because \lim _{n \rightarrow \infty} s_{n}=e\right]
\end{aligned}
$$

Consider $m \leq n$, Using (a)

$$
t_{n} \geq 1+1+\left(1-\frac{1}{n}\right) \frac{1}{2!}+\ldots+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) \frac{1}{m!}
$$

keeping m, fixed and letting $n \rightarrow \infty$ we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf t_{n} \geq 1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{m!}=s_{m} \\
& \lim _{n \rightarrow \infty} \inf t_{n} \geq s_{m} \forall m
\end{aligned}
$$

Letting $m \rightarrow \infty \Rightarrow \lim _{n \rightarrow \infty} \inf t_{n} \geq e_{\ldots}$. .(2)
From (1) and (2),

$$
\begin{aligned}
& \qquad \begin{aligned}
& \lim _{n \rightarrow \infty} \inf t_{n} \geq e \geq \lim _{n \rightarrow \infty} \sup t_{n} \ldots . .(B) \\
& \lim _{n \rightarrow \infty} \inf t_{n} \geq \lim _{n \rightarrow \infty} \sup t_{n} \\
& \text { Always } \lim _{n \rightarrow \infty} \inf t_{n} \leq \lim _{n \rightarrow \infty} \sup t_{n} \\
& \Rightarrow \lim _{n \rightarrow \infty} \inf t_{n}=\lim _{n \rightarrow \infty} \sup t_{n} \\
& \Rightarrow \lim _{n \rightarrow \infty} t_{n} \text { exists and } \lim _{n \rightarrow \infty} t_{n}=e \\
& \therefore \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
\end{aligned}
\end{aligned}
$$

Lemma 2.16 Prove that $0<e-s_{n}<\frac{1}{n!n}$.
Proof: Clearly, $e-s_{n}>0 \forall n$

$$
\begin{aligned}
e-s_{n} & =\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\ldots \\
& =\frac{1}{(n+1)!}\left[1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+\ldots\right] \\
& <\frac{1}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+1)^{2}}+\ldots\right) \\
& =\frac{1}{(n+1)!}\left(\frac{1}{\left.1-\frac{1}{n+1}\right)}\right. \\
& =\frac{1}{(n+1)!}\left(\frac{n+1}{n+1-1}\right) \\
& =\frac{1}{n!} \frac{1}{n} \\
\therefore 0 & <e-s_{n}<\frac{1}{n!n}
\end{aligned}
$$

Lemma 2.17 Prove thate is irrational.
Proof: Suppose e is rational. $e=\frac{p}{q}, q \neq 0 ; \operatorname{gcd}(p, q)=1 ; p, q$ are integer.
By the above lemma $0<e-S_{q}<\frac{1}{q!q} \Rightarrow 0<\left(e-s_{q}\right) q!<\frac{1}{q} \ldots$
Now, $q!e$ is an integer. $\left[\because q!e=q!\frac{p}{q}=(q-1)!p=\right.$ an integer $]$

$$
\begin{aligned}
q!s_{q} & =q!\left[1+\frac{1}{1!}+\frac{1}{2!}+\ldots+\frac{1}{q!}\right] \\
& =q!+q!+3 \cdot 4 \cdots q+\ldots+q+1 \\
& =\text { an integer } \\
q \geq 1 & \Rightarrow \frac{1}{q} \leq 1 \\
\therefore(1) \Rightarrow 0 & <q!\left(e-s_{q}\right)<\frac{1}{q} \leq 1 \\
0 & <\left(e-s_{q}\right) q!<1
\end{aligned}
$$

This means that $q!\left(e-s_{q}\right)$ is an integer lying between 0 and $1 . \therefore e$ must be irrational.

Root and Ratio test

Theorem 2.18 Root test: Given $\sum a_{n}$ and

$$
\alpha=\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|a_{n}\right|}
$$

(a) if $\alpha<1, \sum a_{n}$ converges.
(b) if $\alpha>1, \sum a_{n}$ diverges.
(c) if $\alpha=1$ then the test gives no information.

Proof: (a) If $\alpha<1$ then there exists β with $\alpha<\beta<1$, and an integer N such that $\sqrt[n]{\left|a_{n}\right|}<\beta \forall n \geq N$ (By Theorem 1.105(b)), $\left|a_{n}\right|<\beta^{n} \quad \forall n \geq N$. But $\sum \beta^{n}$ converges $(\because \beta<1) \therefore$ By comparison test, $\sum a_{n}$ converges.
(b) If $\alpha>1$, by Theorem $1.105(\mathrm{a})$; there is a sequence $\left\{n_{k}\right\}$ such that $\sqrt[n]{\mid k} \sqrt{\left|a_{n_{k}}\right|} \rightarrow \alpha$ as $k \rightarrow \infty[\because \alpha$ is a subsequence limit $] \Rightarrow\left|a_{n}\right|>1$ for infinitely many values of n. $\left\{a_{n}\right\}$ does not convergers to $0 . \therefore \sum a_{n}$ diverges [By Theorem 2.5]
(c) Suppose $\alpha=1$. Consider the series $\sum \frac{1}{n}$ and $\sum \frac{1}{n^{2}}$. Take $a_{n}=\frac{1}{n}$. Then

$$
\begin{aligned}
a_{n}^{\frac{1}{n}} & =\left(\frac{1}{n}\right)^{\frac{1}{n}} \\
& =\frac{1}{n^{\frac{1}{n}}} \\
\lim _{n \rightarrow \infty} \sup a_{n}^{\frac{1}{n}} & =\lim _{n \rightarrow \infty} \sup \frac{1}{n^{\frac{1}{n}}}=1\left[\because \lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1\right]
\end{aligned}
$$

Then $\sum 1 / n$ diverges. $a_{n}=1 / n^{2}$

$$
\lim _{n \rightarrow \infty} \sup a_{n}^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \sup \left(\frac{1}{n^{\frac{1}{n}}}\right)^{2}=1
$$

But $\sum \frac{1}{n^{2}}$ converges. \therefore The root test fails.

Theorem 2.19 Ratio test: Consider the series $\sum a_{n}$
(a) It converges if

$$
\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n+1}}{a_{n}}\right|<1
$$

(b) It diverges if $\left|\frac{a_{n+1}}{a_{n}}\right| \geq 1 \forall n \geq N$.

Proof: (a) Let

$$
\alpha=\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n+1}}{a_{n}}\right|<1 \text { and } \alpha<1
$$

Then there exists β with $\alpha<\beta<1$ and an integer N such that

$$
\begin{aligned}
&\left|\frac{a_{n+1}}{a_{n}}\right|<\beta \forall n \geq N . \\
&\left|a_{n+1}\right|<\beta\left|a_{n}\right| \forall n \geq N . \\
&\left|a_{N}+1\right|<\beta\left|a_{N}\right| \\
&\left|a_{N}+2\right|<\beta\left|a_{N+1}\right|<\beta \cdot \beta \cdot\left|a_{N}\right|=\beta^{2}\left|a_{N}\right| \\
& \cdot \\
& \cdot \\
& \cdot \\
&\left|a_{N}+p\right|<\beta^{p}\left|a_{N}\right| \forall p \geq 0 .
\end{aligned}
$$

Take $n=N+p \forall p \geq 0$

$$
\begin{aligned}
\left|a_{n}\right| & <\beta^{n-N}\left|a_{N}\right| \forall n \geq N . \\
& =\beta^{-N}\left|a_{N}\right| \beta^{n} \\
\text { (i.e.) }\left|a_{n}\right| & <\left(\beta^{-N}\left|a_{N}\right|\right) \beta^{n}
\end{aligned}
$$

Now $\sum \beta^{n}$ converges $(\because \beta<1) \therefore \sum \alpha_{n}$ converges, by comparison test.
(b)

$$
\begin{aligned}
\left|\frac{a_{n+1}}{a_{n}}\right| & \geq 1 \forall n \geq n_{0} \\
\Rightarrow\left|a_{n+1}\right| & \geq\left|a_{N}\right| \forall n \geq n_{0} \\
& \Rightarrow\left(a_{n}\right) \nrightarrow 0 \text { as } n \rightarrow \infty\left[\because\left|a_{n}\right|\right. \text { is an increasing sequence. } \\
& \left.\quad(\text { i.e. }) 0 \leq\left|a_{1}\right| \leq\left|a_{1}\right| \leq \ldots\right] \\
& \Rightarrow \sum a_{n} \text { diverges. }
\end{aligned}
$$

Note 2.20

$$
\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n}+1}{a_{n}}\right|=1 \text { gives no information. }
$$

Proof: Consider

$$
\begin{aligned}
& \qquad \lim _{n \rightarrow \infty} \sup \left|\frac{a_{n}+1}{a_{n}}\right|=1 \\
& \text { Consider the series } \sum \frac{1}{n}
\end{aligned}
$$

$$
\text { Now } a_{n}=\frac{1}{n} \text { and } a_{n+1}=\frac{1}{n+1}
$$

$$
\frac{a_{n+1}}{a_{n}}=\frac{n}{n+1}=\frac{1}{1+\frac{1}{n}}
$$

$$
\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n}}=1
$$

Observe, $\sum \frac{1}{n}$ diverges. Consider $\sum \frac{1}{n^{2}}$

$$
\begin{array}{r}
a_{n}=\frac{1}{n^{2}} ; a_{n+1}=\frac{1}{(n+1)^{2}} \\
\frac{a_{n+1}}{a_{n}}=\frac{n^{2}}{(n+1)^{2}}=\frac{1}{(1+1 / n)^{2}} \\
\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n}+1}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{2}}=1
\end{array}
$$

Note that $\sum \frac{1}{n^{2}}$ converges. $\therefore \lim _{n \rightarrow \infty} \sup \left|\frac{a_{n}+1}{a_{n}}\right|=1$ gives no information.
Problem 2.21 Consider the series $1 / 2+1 / 3+1 / 2^{2}+1 / 3^{2}+\ldots$ Let

$$
\begin{gathered}
a_{n}= \begin{cases}\frac{1}{2^{\frac{n+1}{2}}} & \text { if } n \text { is odd } \\
\frac{1}{3^{\frac{n}{2}}} & \text { if } n \text { is even }\end{cases} \\
a_{n}^{1 / n}= \begin{cases}\frac{1}{2^{\frac{n+1}{2^{n}}}} & \text { if } n \text { is odd } \\
\frac{1}{3^{2^{n}}} & \text { if } n \text { is even }\end{cases} \\
= \begin{cases}\frac{1}{2^{\frac{1}{2}+\frac{1}{2^{n}}}} & \text { if } n \text { is odd } \\
\frac{1}{3^{\frac{1}{2}}} & \text { if } n \text { is even }\end{cases} \\
\lim _{n \rightarrow \infty} \inf \sqrt[n]{\left|a_{n}\right|}=\frac{1}{\sqrt{3}} ; \lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|a_{n}\right|}=\frac{1}{\sqrt{2}}<1
\end{gathered}
$$

$\therefore \sum a_{n}$ converges

Note 2.22

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left(\frac{3}{2}\right)^{\frac{n}{2}} \frac{1}{2}=\infty \\
\lim _{n \rightarrow \infty} \inf \left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{\frac{n}{2}} \sqrt{2}=0
\end{aligned}
$$

Here we observe that whenn is odd. $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2^{\frac{n+1}{2}}}{3^{\frac{n}{2}}}=\left(\frac{2}{3}\right)^{\frac{n}{2}} \sqrt{2} \leq 1 \forall$ odd $n \geq n_{0} . \therefore$ We need not apply ratio test.

Problem 2.23 Test the converges series $\frac{1}{2}+1+\frac{1}{8}+\frac{1}{4}+\frac{1}{32}+\frac{1}{16}+\frac{1}{128}+\frac{2}{64}+\ldots$ (i.e.) $\frac{1}{2}+1+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{2}}+\frac{1}{2^{5}}+\frac{1}{2^{4}}+\frac{1}{2^{7}}+\frac{1}{2^{6}}+\ldots$

Solution:

$$
\begin{aligned}
& a_{n}= \begin{cases}\frac{1}{2^{n}} & \text { if } n \text { is odd } \\
\frac{1}{2^{n-2}} & \text { if } n \text { is even }\end{cases} \\
& a_{n}^{\frac{1}{n}}= \begin{cases}\frac{1}{2} & \text { if } n \text { is odd } \\
\frac{1}{2^{1-\frac{2}{n}}} & \text { if } n \text { is even }\end{cases}
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \sup a_{n}^{\frac{1}{n}}=\frac{1}{2}<1
$$

$\therefore \sum a_{n}$ converges.

Note 2.24 Let n is even

$$
\begin{aligned}
\frac{a_{n+1}}{a^{n}} & =\frac{2^{n-2}}{2^{n+1}}\left(\because a_{n}=\frac{1}{2^{n-2}}\right) \\
& =\frac{2^{n} 2^{-2}}{2^{n} 2^{1}}=\frac{1}{2^{3}} \\
& =1 / 8
\end{aligned}
$$

When, n is odd

$$
\begin{aligned}
\frac{a_{n+1}}{a^{n}} & =\frac{1}{2^{n-1}} \cdot 2^{n}\left(\because a_{n}=\frac{1}{2^{n}}\right. \\
& =\frac{1}{2^{-1}}=2 \\
\therefore\left|\frac{a_{n+1}}{a^{n}}\right| & =\frac{1}{8}<1 \quad \forall n \geq n_{0}
\end{aligned}
$$

There is no need to apply ratio test.

Remark 2.25

$$
\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n+1}}{a^{n}}\right|=2 ; \lim _{n \rightarrow \infty} \inf \left|\frac{a_{n+1}}{a^{n}}\right|=\frac{1}{8}
$$

Theorem 2.26 For any sequence $\left\{c_{n}\right\}$ of + ve numbers, (a)

$$
\lim _{n \rightarrow \infty} \sup \sqrt[n]{c_{n}} \leq \lim _{n \rightarrow \infty} \sup \frac{c_{n+1}}{c_{n}}
$$

(b)

$$
\lim _{n \rightarrow \infty} \inf \frac{c_{n+1}}{c_{n}} \leq \lim _{n \rightarrow \infty} \inf \sqrt[n]{c_{n}}
$$

Proof: Let

$$
\alpha=\lim _{n \rightarrow \infty} \sup \frac{c_{n+1}}{c_{n}}
$$

Suppose $\alpha=\infty$ then there is nothing to prove. If α is a real number, then there exists $\beta>\alpha$ under integer N such that $\frac{c_{n+1}}{c_{n}}<\beta \forall n \geq N$ [by Theorem
$1.105(\mathrm{~b})]$

$$
\begin{aligned}
& \frac{c_{N+1}}{c_{N}}<\beta \\
& \frac{c_{N+2}}{c_{N+1}}<\beta \\
& \frac{c_{N+3}}{c_{N+2}}<\beta \\
& \cdot \\
& \cdot \cdot \\
& \frac{c_{N+p}}{c_{N+p-1}}<\beta
\end{aligned}
$$

multiplying all these inequalities

$$
\begin{aligned}
\frac{c_{N+p}}{c_{N}} & <\beta^{p} \forall p \geq 0 \\
\Rightarrow c_{N+p} & <\beta^{p} c_{N} \forall p \geq 0
\end{aligned}
$$

put $n=N+p$

$$
\begin{aligned}
c_{n} & <\beta^{n-N} c_{N}=\left(c_{N} \beta^{-N}\right) \beta^{n} \\
\Rightarrow c_{n}^{\frac{1}{n}} & <\left(c_{N} \beta^{-N}\right)^{\frac{1}{n}} \beta \\
\lim _{n \rightarrow \infty} \sup c_{n}^{\frac{1}{n}} & <\beta\left[\because \lim _{n \rightarrow \infty}\left(c_{N} \beta^{-N}\right)^{\frac{1}{n}}=1\right]
\end{aligned}
$$

This is true for every $\beta>\alpha$

$$
\begin{aligned}
& \therefore \lim _{n \rightarrow \infty} \sup c_{n}^{\frac{1}{n}} \leq \alpha=\lim _{n \rightarrow \infty} \sup \frac{c_{n+1}}{c_{n}} \\
\therefore & \lim _{n \rightarrow \infty} \sup \sqrt[n]{c_{n}} \leq \lim _{n \rightarrow \infty} \sup \frac{c_{n+1}}{c_{n}}
\end{aligned}
$$

(b) Let

$$
\alpha=\lim _{n \rightarrow \infty} \inf \frac{c_{n+1}}{c_{n}}
$$

If $\alpha=-\infty$ there is nothing to prove. If α is finite then thee exists a +ve
real number $\beta<\alpha$, and an integer N such that

$$
\begin{aligned}
& \frac{c_{n+1}}{c_{n}}>\beta \forall n \geq N\left(\text { by Theorem 1.105(b) for inf } x<s * \Rightarrow s_{n} \geq x\right) \\
\Rightarrow & \frac{c_{N+1}}{c_{N}}>\beta \\
\Rightarrow & \frac{c_{N+2}}{c_{N+1}}>\beta
\end{aligned}
$$

$$
\frac{c_{N+p}}{c_{N+p-1}}>\beta
$$

multiplying all these inequalities, $\frac{c_{N+p}}{c_{N}}<\beta^{p} \forall p \geq 0$. put $n=N+p$

$$
\begin{aligned}
& \frac{c_{n}}{c_{N}}>\beta^{n-N} \\
& \Rightarrow c_{n}>c_{N} \beta^{n-N} \\
& \Rightarrow \sqrt[n]{c_{n}}>\sqrt[n]{c_{N} \beta^{-N}} \beta \\
& \lim _{n \rightarrow \infty} \inf \sqrt[n]{c_{n}}>\beta\left(\because \lim _{n \rightarrow \infty} \sqrt[n]{c_{N} \beta^{-N}}=1\right)
\end{aligned}
$$

This is true for every $\beta<\alpha$

Power Series

Definition 2.27 Given $a\left\{c_{n}\right\}$ of complex numbers, the series $\sum_{n=0}^{\infty} c_{n} x_{n}$ is called a power series. The numbers c_{n} are called coefficient of the series and z is a complex number.

Note 2.28 1. The series will converge or diverge depending upon the choice of z.
2. Every power series there is associated a circle of convergence such that the given power series converge if z is the interior of the circle and diverges if z is exterior of the circle.

Theorem 2.29 Given the power series

$$
\sum_{n=0}^{\infty} C_{n} z^{n} \text { and } \alpha=\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|C_{n}\right|}
$$

$$
\begin{aligned}
& \therefore \lim _{n \rightarrow \infty} \inf \sqrt[n]{c_{n}} \geq \alpha \\
& =\lim _{n \rightarrow \infty} \inf \frac{c_{n+1}}{c_{n}} \\
& \therefore \lim _{n \rightarrow \infty} \inf \frac{c_{n+1}}{c_{n}} \leq \lim _{n \rightarrow \infty} \inf \sqrt[n]{c_{n}} .
\end{aligned}
$$

and $R=\frac{1}{\alpha}$ then $\sum C_{n} z^{n}$ converges if $|z|<R$ and diverges if $|z|>R$. (R is called the radius of convergence of $\sum C_{n} z^{n}$)
Proof: Let

$$
\begin{aligned}
a_{n} & =C_{n} z^{n} \\
\left|a_{n}\right| & =\left|C_{n}\right||z|^{n} \\
\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|C_{n}\right||z|} \\
& =\alpha|z| \\
& =\frac{|z|}{R}\left(\because \alpha=\frac{1}{R}\right)
\end{aligned}
$$

By root test $\sum C_{n} z^{n}$ converges if $\frac{|z|}{R}<1$ (i.e.)if $|z|<R$ and $\sum C_{n} z^{n}$ diverges if $\frac{|z|}{R}>1$ (i.e.) if $|z|>R$.

Problem 2.30 Find the radius of convergence of $\sum n^{n} z^{n}$.
Solution: Let

$$
\begin{aligned}
c_{n} & =\sum n^{n} z^{n} \\
1 / R & =\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|c_{n}\right|} \\
& =\lim _{n \rightarrow \infty} \sup \sqrt[n]{\left|n_{n}\right|} \\
& =\lim _{n \rightarrow \infty} n \\
1 / R & =\infty \\
R & =0
\end{aligned}
$$

$\therefore \sum n^{n} z^{n}$ is digit on the whole plane.
Note 2.31

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \inf \frac{c_{n+1}}{c_{n}} & \leq \lim _{n \rightarrow \infty} \inf \sqrt[n]{n} \\
& \leq \lim _{n \rightarrow \infty} \sup \sqrt[n]{c_{n}} \\
& \leq \lim _{n \rightarrow \infty} \sup \frac{c_{n+1}}{c_{n}} \\
\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} \text { exists. } \Rightarrow \lim _{n \rightarrow \infty} \inf \frac{c_{n+1}}{c_{n}} & =\lim _{n \rightarrow \infty} \sup \frac{c_{n+1}}{c_{n}} \\
\Rightarrow \lim _{n \rightarrow \infty} \inf \sqrt[n]{c_{n}} & =\lim _{n \rightarrow \infty} \sup \sqrt[n]{c_{n}} \\
\text { and } \Rightarrow \lim _{n \rightarrow \infty} \sqrt[n]{c_{n}} & =\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} \\
\text { Hence } \frac{1}{R} & =\lim _{n \rightarrow \infty} \sup \sqrt[n]{c_{n}} \\
& =\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}} \\
\frac{1}{R} & =\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} .
\end{aligned}
$$

Problem 2.32 Find the radius of convergence of $\sum \frac{z^{n}}{n!}$ Solution: Here, $c_{n}=\frac{1}{n!} ; c_{n+1}=\frac{1}{(n+1)!}$. Now,

$$
\begin{aligned}
\frac{c_{n+1}}{c_{n}} & =\frac{1}{n+1} \\
\frac{1}{R} & =\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n+1}=\frac{1}{\infty}=0 \\
R & =\infty
\end{aligned}
$$

$\therefore \sum \frac{z^{n}}{n!}$ converges $\forall z$.
Problem 2.33 Find the radius of convergence of $\sum z^{n}$
Solution: Here, $c_{n}=1 ; c_{n+1}=1$. Now, $\frac{1}{R}=\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}=1 \Rightarrow R=$ 1. $\therefore \sum z^{n}$ converges if $|z|<1$ and $\sum z^{n}$ diverges if $|z|>1$.

Problem $2.34 \sum \frac{z^{n}}{n^{2}}$ has radius of converges and prove that the power series converges for all z within $|z| \leq 1$.
Solution: Here, $c_{n}=\frac{1}{n^{2}} ; \quad c_{n+1}=\frac{1}{(n+1)^{2}}$. Now,

$$
\begin{aligned}
\frac{1}{R} & =\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\left(1+\frac{1}{n}\right)^{2}} \\
\frac{1}{R} & =1 \\
R & =1
\end{aligned}
$$

$\therefore \sum \frac{z^{n}}{n^{2}}$ converges if $|z|<1$. When $|z|=1$, consider $\left|\frac{z^{n}}{N^{2}}\right|=\frac{\left|z^{n}\right|}{\left|n^{2}\right|}=\frac{1}{n^{2}}$. Since $\sum \frac{1}{n^{2}}$ converges, By comparison test. $\sum \frac{z^{n}}{n^{2}}$ converges if $|z|<1$ and $\sum \frac{z^{n}}{n^{2}}$ converges within and on the circle $|z|=1 . \therefore \sum \frac{z^{n}}{n^{2}}$ converges $\forall z$ with $|z| \leq 1$.

Summation by Parts Given two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$. Put

$$
A_{n}=\sum_{k=0}^{n} a_{k} \text { if } n \geq 0
$$

Put $A_{-1}=0$. Then for $0 \leq p \leq q$

$$
\sum_{n=p}^{q} a_{n} b_{n}=\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p}
$$

Proof:

$$
\begin{aligned}
A_{n} & =a_{0}+a_{1}+\ldots+a_{n-1}+a_{n}=A_{n-1}+a_{n} \\
A_{n}-A_{n-1} & =a_{n} \\
\sum_{n=p}^{q} A_{n} b_{n} & =\sum_{n=p}^{q-1}\left(A_{n}-A_{n-1}\right) b_{n} \\
& =\sum_{n=p}^{q} a_{n} b_{n}-\sum_{n=p}^{q} A_{n-1} b_{n} \\
& =\sum_{n=p}^{q} A_{n} b_{n}-\left[A_{p-1} b_{p}+A_{p} b_{p+1}+\ldots+A_{q-1} b_{q}\right] \\
& =\sum_{n=p}^{q} A_{n} b_{n}-\sum_{n=p-1}^{q-1} A_{n} b_{n+1} \\
& =\sum_{n=p}^{q-1} A_{n} b_{n}+A_{q} b_{q}-\left[\sum_{n=p}^{q-1} A_{n} b_{n+1}+A_{p-1} b_{p}\right] \\
& =\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p} .
\end{aligned}
$$

Note 2.35 The above formula is called partial summation formula. It is used to investigate the series of the form $\sum a_{n} b_{n}$.

Theorem 2.36 Dirichlet Test:

(a) Suppose the partial summation A_{n} of $\sum a_{n}$ form a bounded sequence.
(b) $b_{0} \geq b_{1} \geq b_{2} \geq \ldots$
(c) If

$$
\lim _{n \rightarrow \infty} b_{n}=0 .
$$

Then $\sum a_{n} b_{n}$ converges.
Proof: Given that $\left\{A_{n}\right\}$ is a sequence of partial sum of the series $\sum a_{n}$. Also given that $\left\{A_{n}\right\}$ is bounded by (a) \Rightarrow There exists a real number M such that $\left|A_{n}\right| \leq M \forall M$. Also by (c) $\lim _{n \rightarrow \infty} b_{n}=0 \Rightarrow$ Given $\epsilon=0$ there exists a + ve integer N such that $\left|b_{n}-0\right|<\epsilon / 2 M \forall n \geq N$ (i.e.) $\left|b_{n}\right|<\epsilon / 2 M$ $\forall n \geq N$..

For $N \leq p \leq q$,

$$
\begin{aligned}
\left|\sum_{n=p}^{q} a_{n} b_{n}\right| & =\sum_{n=p}^{q-1} A_{n}\left(b_{n}-b_{n+1}\right)+A_{q} b_{q}-A_{p-1} b_{p} \\
& \leq M\left|\sum_{n=p}^{q-1}\left(b_{n}-b_{n+1}\right)+b_{q}+b_{p}\right| \\
& =M\left|\left(b_{p}-b_{p+1}\right)+\left(b_{p+1}-b_{p+2}\right)+\ldots+\left(b_{q-1}-b_{q}\right)+b_{q}+b_{p}\right| \\
& =M\left|\left(b_{p}-b_{q}\right)+b_{q}+b_{p}\right| \\
& =2 M\left|b_{p}\right| \\
\left|\sum_{n=p}^{q} a_{n} b_{n}\right| & \leq 2 M\left|b_{p}\right|<2 M \cdot \frac{\epsilon}{2 M}=\epsilon[\because p \geq N \quad \text { using }(1)] \\
\therefore\left|\sum_{n=p}^{q} a_{n} b_{n}\right| & <\epsilon \forall q \geq p \geq N
\end{aligned}
$$

By cauchy's criterian,

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

converges

Theorem 2.37 (Leibnitz Test)
(a)Suppose $\left|c_{1}\right| \geq\left|c_{2}\right| \geq\left|c_{3}\right| \geq \ldots$
(b) $c_{2 m-1} \geq 0, c_{2 m} \leq 0(m=1,2,3, .$.
(c)

$$
\lim _{n \rightarrow \infty} c_{n}=0
$$

Then $\sum c_{n}$ converges.
Proof: By (b) $c_{n}=(-1)^{n+1}\left|c_{n}\right|$. Take $a_{n}=(-1)^{n+1}, b_{n}=\left|c_{n}\right|$. Let $\left\{A_{n}\right\}$ be a sequence of partial summation of the series $\sum a_{n}=\sum(-1)^{n+1} \Rightarrow\left\{A_{n}\right\}$ is a bounded sequence. Also by (a) $\left|c_{1}\right| \geq\left|c_{2}\right| \geq\left|c_{3}\right| \geq \ldots$. Also using (c)

$$
\lim _{n \rightarrow \infty}\left|c_{n}\right|=0
$$

\therefore By the Dirichlet's Test, $\sum(-1)^{n+1}\left|c_{n}\right|=\sum c_{n}$ converges.

Note 2.38 The series for which condition (b) holds are called alternating series.

Theorem 2.39 Suppose the radius of convergence of $\sum c_{n} z^{n}$ is 1. and suppose $c_{0} \geq c_{1} \geq c_{2} \ldots$ and $\lim _{n \rightarrow \infty} c_{n}=0$. Then $\sum c_{n} z^{n}$ converges, at every point of the circle $|z|=1$ except possibly at $z=1$.

Proof: Consider the series $\sum c_{n} z^{n}$. Let $\left\{A_{n}\right\}$ be the sequence of partial sums of the series $\sum z^{n}$

$$
\begin{aligned}
\therefore\left|A_{n}\right| & =\left|1+z+z^{2}+\ldots+z^{n}\right| \\
& =\left|\frac{1-z^{n+1}}{1-z}\right|=\frac{\left|1-z^{n+1}\right|}{|1-z|} \\
& \leq \frac{1-|z|^{n+1}}{|1-z|} \\
& =\frac{2}{|1-z|} \text { if }|z|=1, z \neq 1 \\
\left|A_{n}\right| & \leq \frac{2}{|1-z|}
\end{aligned}
$$

$\Rightarrow\left\{A_{n}\right\}$ is bounded.
Also $c_{0} \geq c_{1} \geq \ldots$ and

$$
\lim _{n \rightarrow \infty} c_{n}=0
$$

\therefore By Dirichels test, $\sum c_{n} z^{n}$ converges if $|z|=1$ and $z \neq 1$. Also given that the radius convergence of $\sum c_{n} z^{n}$ is $1 . \therefore$ The series $\sum c_{n} z^{n}$ converges at every point in and on the circle $|z|=1$ except at $z=1$.

Definition 2.40 Absolute convergence: The series $\sum a_{n}$ is said to be converge absolutely if $\sum\left|a_{n}\right|$ converges.

Theorem 2.41 If $\sum a_{n}$ converges absolutely then $\sum\left|a_{n}\right|$ converges.
Proof: Suppose $\sum a_{n}$ converges absolutely $\Rightarrow \sum a_{n}$ converges. Given $\epsilon>0$ there exists an integer N such that

$$
\begin{equation*}
\sum_{k=m}^{n}\left|a_{k}\right|<\epsilon \forall n \geq m \geq N \tag{1}
\end{equation*}
$$

Also

$$
\begin{aligned}
& \left|\sum_{k=m}^{n} a_{k}\right| \leq \sum_{k=m}^{n}\left|a_{k}\right|<\epsilon \forall n \geq m \geq N \quad \text { by }(1) \\
\Rightarrow & \left|\sum_{k=m}^{n} a_{k}\right|<\epsilon \forall n \geq m \geq N
\end{aligned}
$$

$\Rightarrow \sum a_{n}$ converges. The converse of the above theorem is not true.
Example 2.42 Consider the series $\sum_{n=1}^{\infty}(-1)^{n-1}$ converges but it is not absolutely convergent.
Proof: For $c_{n}=(-1)^{n-1} ; c_{2 m-1}=(-1)^{2 m-1-1}=1 \geq 0 ; c_{2 m}=(-1)^{2 m-1}=$
$-1<0 ;\left|c_{n}\right|=1 \forall n ;\left|c_{1}\right| \geq\left|c_{2}\right| \geq \ldots$. Now, $\left\{\frac{1}{n}\right\}$ is a monotonic decreasing sequence and

$$
\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

By Leibnitz test $\sum(-1)^{n-1} \frac{1}{n}$ converges.

$$
\sum_{n=1}^{\infty}\left|(-1)^{n-1} \frac{1}{n}\right|=\sum \frac{1}{n} \text { diverges }
$$

But it is not absolutely convergence. \therefore convergence \nRightarrow absolutely convergence.

Note 2.43 For series of + ve terms convergence and absolutely convergence are the same.

Theorem 2.44 Addition and Multiplication of series:

$\sum a_{n}=A ; \sum b_{n}=B$. Then $\sum\left(a_{n}+b_{n}\right)=A+B ; \sum c a_{n}=c A$ for any fixed c.
Proof: Let $\left\{A_{n}\right\}$ be a sequence of partial sums of the series $\sum a_{n}$ and $\left\{B_{n}\right\}$ be a sequence of partial sum of the series $\sum b_{n}$. Now $\sum a_{n}=A ; \sum b_{n}=$ $B \Rightarrow A_{n} \rightarrow A$ and $B_{n} \rightarrow B$ as $n \rightarrow \infty \Rightarrow A_{n}+B_{n} \rightarrow A+B$ as $n \rightarrow \infty$

$$
\begin{aligned}
\text { (i.e.) } \lim _{n \rightarrow \infty}\left(A_{n}+B_{n}\right) & =A+B \\
\Rightarrow \lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k}\right) & =A+B \\
\Rightarrow \lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(a_{k}+b_{k}\right) & =A+B \\
\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right) & =A+B
\end{aligned}
$$

clearly $c A_{n} \rightarrow c A$ as $n \rightarrow \infty$

$$
\text { (i.e.) } \begin{aligned}
\lim _{n \rightarrow \infty} c \sum_{k=1}^{n}\left(a_{k}\right. & =c A) \\
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(c a_{k}\right) & =c A \\
\sum_{k=1}^{\infty} c a_{k} & =c A
\end{aligned}
$$

Cauchy's Product:

Given $\sum a_{n}, \sum b_{n}$ we put

$$
\begin{aligned}
c_{n} & =b_{n} a_{0}+b_{n-1} a_{1}+\ldots+b_{0} a_{n} \\
& =\sum_{k=0}^{n} a_{k} b_{n}-k \\
\left(\sum a_{n}\right)\left(\sum b_{n}\right) & =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right)+\ldots+\left(a_{0} b_{n}+a_{1} b_{n-1}+\ldots+a_{n} b_{0}\right) \\
& =c_{0}+c_{1}+c_{2}+\ldots+c_{n-1}+\ldots \\
& =\sum c_{n}
\end{aligned}
$$

Example 2.45 Cauchy's product of two convergent series need not be convergent.
Proof: Consider the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}
$$

Here $\left\{\frac{1}{\sqrt{n+1}}\right\}$ to a decreasing sequence and $\frac{1}{\sqrt{n+1}} \rightarrow 0$ as $n \rightarrow \infty . \therefore B y$ Leibnitz test,

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}} \text { converges. }
$$

Consider the product of two series

$$
\begin{aligned}
\sum a_{n} & =\sum \frac{(-1)^{n}}{\sqrt{n+1}}=\sum b_{n} \\
\text { Now } c_{n} & =\sum_{k=0}^{n} a_{k} b_{n-k} \\
& =\sum_{k=0}^{n} \frac{(-1)^{k}}{\sqrt{k+1}} \frac{(-1)^{n-k}}{\sqrt{n-k+1}} \\
& =(-1) \sum_{k=0}^{n} \frac{1}{\sqrt{k+1} \sqrt{n-k+1}} \\
\text { Now }(k+1)(n+1-k) & =n k+k-k^{2}+n+1-k \\
& =n k-k^{2}+n+1 \\
& =(n+1)-\left(k^{2}-n k\right) \\
& =\left(\frac{n^{2}}{4}+n+1\right)-\left(k^{2}+\frac{n^{2}}{4}-n k\right) \\
& =\left(\frac{n}{2}+1\right)^{2}-\left(k-\frac{n}{2}\right)^{2} \\
& \leq\left(\frac{n}{2}+1\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore(k+1)(n+1-k) & \leq\left(\frac{n}{2}+1\right)^{2} \\
\Rightarrow \sqrt{(k+1)(n+1-k)} & \leq(n / 2+1) \\
\Rightarrow \frac{1}{\sqrt{(k+1)(n+1-k)}} & \geq \frac{1}{\frac{n}{2}+1} \\
\left|c_{n}\right| & =\left|(-1)^{n} \sum_{k=0}^{n} \frac{1}{\sqrt{(k+1)(n+1-k)}}\right| \\
& =\left|\sum_{k=0}^{n} \frac{1}{\sqrt{(k+1)(n+1-k)}}\right| \\
& =\sum_{k=0}^{n} \frac{1}{\sqrt{(k+1)(n+1-k)}} \geq \sum_{k=0}^{n} \frac{1}{\frac{n}{2}+1} \\
& =\frac{1}{\frac{n}{2}+1} \sum_{k=0}^{n} 1=\frac{n+1}{\frac{n}{2}+1}=\frac{2(n+1)}{(n+2)} \\
& =\frac{2\left(1+\frac{1}{n}\right)}{1+\frac{2}{n}} \\
\left|c_{n}\right| & \geq \frac{2\left(1+\frac{1}{n}\right)}{1+\frac{2}{n}}
\end{aligned}
$$

$\Rightarrow c_{n}$ does not converges to 0 as $n \rightarrow \infty \Rightarrow \sum c_{n}$ diverges.
Note 2.46 The product of two convergent series converges if atleast one of the two series converges absolutely.

Theorem 2.47 Merten's Theorem:

(a) Suppose $\sum a_{n}$ converges absolutely.
(b) Suppose $\sum a_{n}=A$
(c) Suppose $\sum a_{n}=B$
(d) $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}(n=0,1,2 \ldots)$.

Then

$$
\sum_{n=0}^{\infty} c_{n}=A B
$$

Proof:

$$
A_{n}=\sum_{k=0}^{n} a_{k} ; \quad B_{n}=\sum_{k=0}^{n} b_{k} ; \quad c_{n}=\sum_{k=0}^{n} c_{k} .
$$

Let

$$
\begin{aligned}
\beta_{n} & =B_{n}-B \forall n \\
& =c_{0}+c_{1}+\ldots+c_{n} \\
& =a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right)+\ldots+\left(a_{0} b_{n-1}+\ldots+a_{n} b_{0}\right) \\
& =a_{0}\left(\left(b_{0}+b_{1}+\ldots+b_{n}\right)+a_{1}\left(b_{0}+b_{1}+. .+b_{n-1}\right)+a_{n} b_{0}\right) \\
& =a_{0} B_{n}+a_{1} B_{n-1}+\ldots+a_{n} B_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =a_{0}\left(B+\beta_{n}\right)+a_{1}\left(B+\beta_{n-1}\right)+\ldots+a_{n}\left(B+\beta_{0}\right)\left(\because \beta_{n}=B_{n}-B\right) \\
& =B\left(a_{0}+a_{1}+\ldots+a_{n}\right)+\left(a_{0} \beta_{n}+a_{1} \beta_{n-1}+. .+a_{n} \beta_{0}\right) \\
& =B A_{n}+\gamma_{n} \text { where } \gamma_{n}=a_{0} \beta_{n}+a_{1} \beta_{n-1}+\ldots+a_{n} \beta_{0}
\end{aligned}
$$

Claim $c_{n} \rightarrow A B$ as $n \rightarrow \infty ; A_{n} \rightarrow A$ as $n \rightarrow \infty \Rightarrow B A_{n} \rightarrow A B$ as $n \rightarrow \infty$. If enough to prove $\gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Given $\sum a_{n}$ converges absolutely. $\Rightarrow \sum\left|a_{n}\right|$ converges.

$$
\begin{aligned}
\text { (i.e.) } \sum_{0}^{\infty}\left|a_{n}\right| & =\alpha \\
\text { Now } \lim _{n \rightarrow \infty} \beta_{n} & =\lim _{n \rightarrow \infty}\left(B_{n}-B\right) \\
& =B-B \\
& =0
\end{aligned}
$$

Given $\epsilon>0$ there exists an integer N such that

$$
\begin{align*}
\left|\beta_{n}-0\right| & <\epsilon \forall n \geq N \\
\Rightarrow\left|\beta_{n}\right| & <\epsilon \forall n \geq N \ldots \ldots(1) \tag{1}\\
\left|\gamma_{n}\right| & =\left|a_{0} \beta_{n}+a_{1} \beta_{n-1}+\ldots+a_{n} \beta_{0}\right| \\
& =\left|\beta_{n} a_{0}+\beta_{n-1} a_{1}+\ldots+\beta_{N} a_{n-N}+\beta_{N-1} a_{n-N+1}+\ldots+\beta_{0} a_{n}\right| \\
& \leq\left|\beta_{n} a_{0}+\beta_{n-1} a_{1}+\ldots+\beta_{N} a_{n-N}\right|+\left|\beta_{N-1} a_{n-N+1}+\ldots+\beta_{0} a_{n}\right| \\
& <\epsilon\left(\left|a_{0}\right|+\left|a_{1}\right|+\ldots+\left|a_{n-N}\right|\right)+\left|\beta_{N-1} a_{n-N+1}+\ldots+\beta_{0} a_{n}\right| \mathrm{By}(1) \\
& <\beta_{N-1} a_{n-N+1}+\ldots+\beta_{0} a_{n} \mid+\epsilon\left(\left|a_{0}\right|+\left|a_{1}\right|+\ldots+\left|a_{n}\right|\right) \\
& =\beta_{N-1} a_{n-N+1}+\ldots+\beta_{0} a_{n} \mid+\epsilon \alpha \\
\therefore\left|\gamma_{n}\right| & <\left|\beta_{N-1} a_{n-N+1}+\ldots+\beta_{0} a_{n}\right|+\epsilon \alpha
\end{align*}
$$

keeping N fixed and letting $n \rightarrow \infty$ we have

$$
\lim _{n \rightarrow \infty} \sup \left|\gamma_{n}\right| \leq \epsilon \alpha
$$

Since ϵ is arbitrary, we have,

$$
\begin{aligned}
& \quad \lim _{n \rightarrow \infty}\left|\gamma_{n}\right|=0 \\
& \Rightarrow c_{n} \rightarrow A B \text { as } n \rightarrow \infty \\
& \Rightarrow \sum_{n=0}^{\infty} c_{n}=A B .
\end{aligned}
$$

3. UNIT III

Continuity and Differentiation

Let X, Y be the metric spaces. Suppose $E \subset X, f$ maps E into Y and p is a limit point of E we write $f(x) \rightarrow q$ as $x \rightarrow p$ or

$$
\lim _{x \rightarrow p} f(x)=q
$$

If there is a point $q \in Y$ with the following property, for every $\epsilon>0$ there exists $S>0$ such that $d_{y}(f(x), q)<\epsilon \forall x \in E$ for which $0<d_{X}(x, p)<S$. (i.e.)

$$
\lim _{x \rightarrow p} f(x)=q
$$

if given $\epsilon>0$ there exists $S>0$ such that $0<d_{X}(x, p)<S \Rightarrow d_{Y}(f(x), q)<$ ϵ.

Definition 3.1 Let X and Y be any two metric spaces and $E \subset X$. Let f and g be any complex functions defined on E then we define $f+g$ as follows. $(f+g)(x)=f(x)+g(x)$

Theorem 3.2 Let X and Y be any two metric spaces and $E \subset X . p$ is a limit point of E. Then

$$
\lim _{x \rightarrow p} f(x)=q \text { iff } \lim _{n \rightarrow \infty} f\left(p_{n}\right)=q
$$

for every sequence $\left\{p_{n}\right\}$ in E such that $p_{n} \neq p$ and

$$
\lim _{n \rightarrow \infty} p_{n}=p
$$

Proof: Suppose

$$
\lim _{x \rightarrow p} f(x)=q
$$

\Rightarrow Given $\epsilon>0$, there exists $S>0$ such that $0<d_{X}(x, p)<S \Rightarrow$ $d_{Y}(f(x), q)<\epsilon \forall x \in E \ldots$. (1)
$\left\{p_{n}\right\}$ is a sequence of points in E such that $\left\{p_{n}\right\} \rightarrow p$ as $n \rightarrow \infty\left(p_{n} \neq p\right)$ (This is possible $\because p$ is a limit point of $E) \Rightarrow$ there exists N depending on S such that $d_{X}\left(p_{n}, p\right)<S \forall n \geq N$. Now By (1) we have, $d_{Y}\left(f\left(p_{n}\right), q\right)<\epsilon \forall n \geq N$ (i.e.)

$$
\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q
$$

Conversely, Suppose

$$
\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q
$$

for every $\left\{p_{n}\right\}$ in E such that $p_{n} \neq p$ and

$$
\lim _{n \rightarrow \infty} p_{n}=p
$$

To Prove

$$
\lim _{x \rightarrow p} f(x)=q
$$

Suppose this result is false, for some $\epsilon>0$ and for every $S>0$ such that $d_{X}(x, p)<S \Rightarrow d_{Y}(f(x), q) \geq \epsilon$. Let $S_{n}=\frac{1}{n}, n=1,2,3 \ldots$ For $S>0$ without loss of generality choose a point $p \in E$ such that $d_{X}\left(p_{1}, p\right)<S_{1}(=$ $1) \Rightarrow d_{Y}\left(f\left(p_{1}\right), q\right) \geq \epsilon$. Similarly, for $S_{2}>0$ choose a point $p_{2} \in E$ such that $d_{X}\left(p_{2}, p\right)<S_{1}=(1 / 2) \Rightarrow d_{Y}\left(f\left(p_{2}\right), q\right) \geq \epsilon$. Proceeding for $S_{n}>0$, choose a point $p_{n} \in E$ such that $d_{X}\left(p_{n}, p\right)<S_{1}(=1 / n) \Rightarrow d_{Y}\left(f\left(p_{n}\right), q\right) \geq \epsilon . \quad \therefore$ we have a sequence $\left\{p_{n}\right\}$ in E such that $d_{X}\left(p_{n}, p\right)<\frac{1}{n} \Rightarrow d_{Y}\left(f\left(p_{n}\right), q\right) \geq \epsilon$. Now $\left\{p_{n}\right\} \rightarrow p$ as $n \rightarrow \infty[\because 1 / n \rightarrow 0$ as $n \rightarrow \infty]$. But $f\left(p_{n}\right)$ does not converge to $q \quad \therefore$ our assumption is wrong. Hence for every $\epsilon>0$ there exists $S>0$ such that $d_{X}(x, p)<S \Rightarrow d_{Y}(f(x), q)<\epsilon \quad \forall x \in E$.

$$
\therefore \lim _{x \rightarrow p} f(x)=q
$$

Corollary 3.3 If f has a limit at p then this limit is unique.
Proof: Suppose q is a limit of f at p. (i.e.)

$$
\lim _{x \rightarrow p} f(x)=q
$$

\therefore By the previous theorem, we have

$$
\lim _{n \rightarrow \infty} f\left(p_{n}\right)=q
$$

for every $\left\{p_{n}\right\}$ in E such that $p_{n} \neq p$ and $p_{n} \rightarrow p$. But we know that, Every convergence sequence converges to a unique limit. $\therefore f$ has a unique limit at p.

Definition 3.4 Suppose we have two complex f and g then $f \pm g, f g, \lambda f$, $\frac{f}{g}(g \neq 0)$ are defined on a set E as follows.

1. $(f+g)(x)=f(x)+g(x)$.
2. $(f \cdot g)(x)=f(x) \cdot g(x)$
3. $(\lambda f)(x)=\lambda f(x)$
4. $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$.

Similarly we define \bar{f}, \bar{g} map E into \mathbb{R}^{k}. Then we can define $\bar{f} \pm \bar{g}, \bar{f} \bar{g}, \lambda \bar{f}$, $\frac{\bar{f}}{\bar{g}},(\bar{g} \neq 0)$.

Definition 3.5 Continuous at a point: Suppose X, Y are metric spaces and $E \subset X, p \in E$ and f maps E into Y. Then f is said to be continuous at p if for every $\epsilon>0$, there exists a $S>0 \Rightarrow 0<d_{X}(x, p)<S \Rightarrow$ $d_{Y}(f(x), f(p))<\epsilon \forall x \in E$.

Remark 3.6 Suppose f is continuous at $p \Rightarrow$ for every $\epsilon>0$ there exists $S>0$ such that $0<d_{X}(x, p)<S \Rightarrow d_{Y}(f(x), f(p))<\epsilon \forall x \in E \Rightarrow x \in$ $N_{S}(p) \Rightarrow f(x) \in N_{\epsilon}(f(p)) \forall x \in E \Rightarrow f\left(N_{S}(p)\right) \subset N_{\epsilon}(f(p))$.

Theorem 3.7 Let X, Y be metric space and $E \subset X$. p is a limit point of E and $f: E \rightarrow Y$. Then f is continuous at p iff

$$
\lim _{x \rightarrow p} f(x)=f(p)
$$

Proof: Suppose f is continuous at $p . \Leftrightarrow$ for every $\epsilon>0$ there exists $S>0$ such that $0<d_{X}(x, p)<S \Rightarrow d_{Y}(f(x), f(p))<\epsilon \quad \forall x \in E \Leftrightarrow$

$$
\lim _{x \rightarrow p} f(x)=f(p)
$$

Theorem 3.8 Suppose X, Y, Z are metric space and $E \subset E$. f maps E into Y, g maps the range of f into Z and h is a mapping of E into Z defined by $h(x)=g(f(x))$. If f is continuous at $p \in E$ and if g is continuous at $f(p)$ then h is continuous at p. (The function h is called composite of f and g and we write as $h=g \circ f$)
Proof: Let $\epsilon>0$ be given and g is continuous at $f(p) . \therefore \eta>0$ such that $d_{Y}(y, f(p))<\eta \Rightarrow d_{Z}(g(y), g(f(p)))<\epsilon, y \in f(E)$.
Since f is continuous at p for this $\eta>0$, there exists $S>0$ such that $d_{X}(x, p)<S \Rightarrow d_{Y}(f(x), f(p))<\eta \forall x, y \in E$

$$
\begin{aligned}
(i . e .) d_{Y}(f(x), f(p)) & <\eta, f(X) \in f(E) \\
\Rightarrow d_{Z}(g(f(x)),(g(f(p)) & <\epsilon \text { by }(1) \\
\Rightarrow d_{Z}(g \circ f(x),(g \circ f)(p)) & <\epsilon \\
\Rightarrow d_{Z}(h(x), h(p)) & <\epsilon(h=g \circ f) .
\end{aligned}
$$

\therefore we have, $d_{X}(x, p)<S \Rightarrow d_{Z}(h(x), h(p))<\epsilon \forall x \in E \Rightarrow h$ is continuous at p.

Theorem 3.9 A mapping f of a metric space X into a metric space Y is continuous on X iff $f^{-1}(E)$ is open in X for every open get E in Y.
Proof: Suppose f is continuous on X. Let V be a open get in Y. To Prove: $f^{-1}(V)$ is open in X. Let $p \in f^{-1}(V) ; p \in f^{-1}(V) \Rightarrow f(p) \subset V$. Since V is open, there exists $\epsilon>0$ such that $N_{\epsilon}(f(p)) \subset V \ldots \ldots$. (1)
Since f is continuous at p, for $\epsilon>0$ there exists $S>0$ such that $f\left(N_{S}(p)\right) \subset$ $N_{\epsilon}(f(p)) \ldots \ldots$ (2)
From (1) and (2), $\Rightarrow f\left(N_{S}(p)\right) \subset V \Rightarrow N_{S}(p) \subset f^{-1} V \Rightarrow p$ is an interior point of $f^{-1}(V)$. Since p is arbitrary, $f^{-1}(V)$ is open in X. Conversely: Suppose $f^{-1}(V)$ is open in X for every open set V in Y. To Prove: f is continuous at $p, p \in X$. Let $\in>0$ be given. Consider an open set $N_{\epsilon}(f(p))$ in $Y, f^{-1}\left(N_{\epsilon}(f(p))\right)$ is open in X. Now, $\Rightarrow p \in f^{-1}\left(N_{\epsilon}(f(p))\right) \Rightarrow p$ is an interior point of $f^{-1}\left(N_{\epsilon}(f(p))\right) \Rightarrow$ there exists $S>0$ such that $N_{S}(p) \subset$ $f^{-1}\left(N_{\epsilon}(f(p))\right) \Rightarrow f\left(N_{S}(p)\right) \subset N_{\epsilon}(f(p)) \Rightarrow f$ is continuous at p.

Corollary 3.10 A mapping f of a metric space X into a metric space Y is continuous iff $f^{-1}(C)$ is closed in X for every closed set C in Y.
Proof: Let C be a closed set in $Y . C^{c}$ is open in $Y \Rightarrow f^{-1}\left(C^{c}\right)$ is open in X. (by Theorem 3.9) $\Rightarrow\left[f^{-1}(C)\right]^{c}$ is open in $X \Rightarrow f^{-1}(C)$ is closed in X. Conversely: Suppose $f^{-1}(C)$ is closed in X for every closed set C in Y. To Prove: f is continuous on X. Let A be an open set in $Y \Rightarrow A^{c}$ is closed in $Y \Rightarrow f^{-1}\left(A^{c}\right)$ is closed in X. (by our assumption) $\Rightarrow\left[f^{-1}(A)\right]^{c}$ is closed in $X \Rightarrow f^{-1}(A)$ is open in $X . \Rightarrow f$ is continuous on X. (by the previous theorem)

Theorem 3.11 Let f and g be complex continuous function in a metric space X, then $f+g, f \cdot g, \frac{f}{g}(g \neq 0)$ are continuous on X.
Proof: At isolated point of X there is nothing prove. Fix a point $p \in X$ and suppose p is a limit point of X. Since f and g are continuous at p.

$$
\lim _{x \rightarrow p} f(x)=f(p) ; \lim _{x \rightarrow p} g(x)=g(p)
$$

Now,

$$
\lim _{x \rightarrow p}(f+g)(x)=\lim _{n \rightarrow \infty}(f+g) p_{n}
$$

where $p_{n} \rightarrow p$ as $n \rightarrow \infty$ and $p_{n} \neq p$

$$
\begin{aligned}
\lim _{x \rightarrow p}(f+g)(x) & =\lim _{n \rightarrow \infty}\left(f\left(p_{n}\right)+g\left(p_{n}\right)\right) \\
& =\lim _{n \rightarrow \infty} f\left(p_{n}\right)+\lim _{n \rightarrow \infty} g\left(p_{n}\right) \\
& =f(p)+g(p)
\end{aligned}
$$

similarly the other results follow.
Theorem 3.12 Let $f_{1}, f_{2}, \ldots, f_{k}$ be real functions in a metric space X. Let \bar{f} be the mapping X into \mathbb{R}^{k}. defined by $\bar{f}(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right) x \in X$. Then
(a) \bar{f} is continuous iff each of the functions $f_{1}, f_{2}, \ldots, f_{k}$ is continuous.
(b) \bar{f} and \bar{g} are continuous mapping of X into \mathbb{R}^{k} then $\bar{f}+\bar{g}, \bar{f} \cdot \bar{g}$ are continuous on $X\left(f_{1}, f_{2}, \ldots, f_{k}\right.$ are called components of $\left.\bar{f}\right)$.
Proof: Suppose \bar{f} is continuous at every $p \in X$. Then given $\epsilon>0$ there exists $S>0$ such that

$$
\begin{aligned}
&|\bar{f}(x)-\bar{f}(p)|<\epsilon \text { if } 0<d_{X}(x, p)<S \\
& \Rightarrow\left(\sum_{i=1}^{k}\left(f_{i}(x)-f_{i}(p)\right)^{2}\right)^{1 / 2}<\epsilon \text { if } 0<d_{X}(x, p)<S \\
& \Rightarrow\left|f_{i}(x)-f_{i}(p)\right|<\left(\sum_{i=1}^{k}\left(f_{i}(x)-f_{i}(p)\right)^{2}\right)^{1 / 2}<\epsilon \forall i=1,2, \ldots, k \\
& \Rightarrow\left|f_{i}(x)-f_{i}(p)\right|<\epsilon \forall i=1,2, \ldots, k \text { if } 0<d_{X}(x, p)<S
\end{aligned}
$$

\Rightarrow each f_{i} is continuous at $p,(1 \leq i \leq k, p \in X) \Rightarrow$ each f_{i} is continuous on X, $(1 \leq i \leq k)$. Conversely, Suppose f_{i} is continuous on X for each $i=1, \ldots, k \Rightarrow f_{i}$ is continuous at every $p \in X \Rightarrow$ Given $\epsilon>0$ there exists $S_{i}>0$ such that $0<d_{X}(x, p)<S_{i} \Rightarrow\left|f_{i}(x)-f_{i}(p)\right|<\frac{\epsilon}{\sqrt{k}} \forall i=1,2, \ldots, k$. Let $S=\min \left(S_{1}, S_{2}, \ldots, S_{k}\right)$. Now,

$$
\begin{gathered}
\begin{aligned}
0<d_{X}(x, p)<S_{i} \Rightarrow\left|f_{i}(x)-f_{i}(p)\right| & <\frac{\epsilon}{\sqrt{k}} \forall i=1,2, \ldots, k \\
\Rightarrow\left|f_{i}(x)-f_{i}(p)\right|^{2} & <\frac{\epsilon^{2}}{(\sqrt{k})^{2}} \\
\Rightarrow \sum_{i=1}^{k}\left|f_{i}(x)-f_{i}(p)\right|^{2} & <\frac{\epsilon^{2}}{k} \cdot k \\
& =\epsilon^{2}
\end{aligned} \\
\Rightarrow \sqrt{\sum_{i=1}^{k}\left|f_{i}(x)-f_{i}(p)\right|^{2}}<\epsilon \\
\Rightarrow|\bar{f}(x)-\bar{f}(p)|<\epsilon
\end{gathered}
$$

$\Rightarrow \bar{f}$ is continuous at every $p \in X \Rightarrow \bar{f}$ is continuous on X
(b) Let $\bar{f}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ and $\bar{g}=\left(g_{1}, g_{2}, \ldots, g_{k}\right)$. Now, $\bar{f}+\bar{g}=\left(f_{1}+\right.$ $\left.g_{1}, f_{2}+g_{2}, \ldots, f_{k}+g_{k}\right) ; \bar{f} \cdot \bar{g}=\left(f_{1} \cdot g_{1}, f_{2} \cdot g_{2}, \ldots, f_{k} \cdot g_{k}\right)$. Given \bar{f} and \bar{g} are continuous. by (a), each f_{i}, g_{i} are continuous ($i \leq i \leq k$) (by Theorem $3.11) \Rightarrow f_{i}+g_{i}, f_{i} \cdot g_{i}$ are continuous. (by (a))

Theorem 3.13 Let $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ define $\phi_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ by $\phi_{i}(\bar{x})=$ $x_{i},(i=1,2, \ldots, k) . \phi_{i}$ is called the coordinate function, then ϕ_{i} is continuous. Proof: Let $\bar{x}, \bar{y} \in \mathbb{R}^{k}$. Given $\epsilon>0$ choose $S=\epsilon$ such that

$$
\begin{aligned}
|\bar{x}-\bar{y}| & <S \\
\Rightarrow\left|\phi_{i}(\bar{x})-\phi_{i}(\bar{y})\right| & =\left|x_{i}-y_{i}\right| \\
& <\left(\sum_{i=1}^{k}\left|x_{i}-y_{i}\right|^{2}\right)^{1 / 2} \\
& =|\bar{x}-\bar{y}| \\
& <\epsilon
\end{aligned}
$$

$\Rightarrow \phi_{i}$ is continuous on \mathbb{R}^{k}

Theorem 3.14 Every polynomial in \mathbb{R}^{k} is continuous.
Proof: By the above theorem $\phi_{i}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is continuous for every i. Now, $\phi_{i}^{2}(\bar{x})=\phi_{i}(\bar{x}) \cdot \phi_{i}(\bar{x})=x_{i} \cdot x_{i}=x_{i}^{2} \forall i$. In general $\phi_{i}^{n_{i}}(\bar{x})=x_{i}^{n_{i}} \forall i$. By

Theorem 3.11, $\phi_{i}^{n_{i}}$ is continuous. Now,

$$
\begin{aligned}
\left(\phi_{1}^{n_{1}} \cdot \phi_{2}^{n_{2}} \cdots \phi_{k}^{n_{k}}\right) \bar{x} & \\
& =\phi_{1}^{n_{1}}(\bar{x}) \cdot \phi_{2}^{n_{2}}(\bar{x}) \cdots \phi_{k}^{n_{k}}(\bar{x}) \\
& =x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}
\end{aligned}
$$

Now $\phi_{1}^{n_{1}} \cdot \phi_{2}^{n_{2}} \cdots \phi_{k}^{n_{k}}$ is a monomial function, where $n_{1}, n_{2}, \ldots, n_{k}$ are positive integers. Every monomial function is continuous $C_{n_{1}, n_{2}, \ldots, n_{k}}$ is a complex constant $\Rightarrow C_{n_{1}, n_{2}, \ldots, n_{k}} \cdot x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}$ is continuous on $\mathbb{R}^{k} . \Rightarrow \sum C_{n_{1}, n_{2}, \ldots, n_{k}}$. $x_{1}^{n_{1}} \cdot x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}$ is continuous on $\mathbb{R}^{k} . \Rightarrow$ Every polynomial is continuous on \mathbb{R}^{k}.

Continuity and Compact: A mapping \bar{f} on a set E into X is said to be bounded, if there is a real number m such that $|\bar{f}(x)|<m \forall x \in X$.

Theorem 3.15 Suppose f is continuous function on a compact metric space X into a metric space Y. Then $f(X)$ is compact. (i.e., continuous image of a compact metric space is compact)
Proof: Given that X is compact. To Prove: $f(X)$ is compact. Let $\left\{V_{\alpha}\right\}$ be an open cover for $f(X) \Rightarrow$ each V_{α} is open in Y. Now, Given f is continuous $\Rightarrow f^{-1}\left(V_{\alpha}\right)$ is open in X for each $\alpha \Rightarrow\left\{f^{-1}\left(V_{\alpha}\right)\right\}$ is open cover for X. Since X is compact, there exists finitely may indices $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that

$$
\begin{aligned}
X & \subset f^{-1}\left(V_{\alpha_{1}}\right) \cup f^{-1}\left(V_{\alpha_{2}}\right) \cup \cdots \cup f^{-1}\left(V_{\alpha_{n}}\right) \\
& =\bigcup_{i=1}^{n} f^{-1}\left(V_{\alpha_{i}}\right) \\
\Rightarrow f(X) & \subset \bigcup_{i=1}^{n} f f^{-1}\left(V_{\alpha_{i}}\right) \subset \bigcup_{i=1}^{n} V_{\alpha_{i}}
\end{aligned}
$$

$\Rightarrow\left\{V_{\alpha}\right\} \Rightarrow$ has a finite sub cover. $\therefore f(X)$ is compact.
Theorem 3.16 If \bar{f} is continuous mapping of a compact metric space X into \mathbb{R}^{k}. Then $\bar{f}(X)$ is closed and bounded. $\therefore \bar{f}$ is bounded.
Proof: Given \bar{f} is continuous and X is compact. $\Rightarrow \bar{f}(x)$ is a compact subset of $\mathbb{R}^{k} . \Rightarrow \bar{f}(x)$ is closed and bounded. (by Heine Borel theorem) Now, in particular $\Rightarrow \bar{f}(x)$ is bounded $\Rightarrow \bar{f}$ is bounded.

Theorem 3.17 Suppose f is a continuous real function on a compact metric space X and $M=\sup _{p \in X} f(p)$ and let $m=\inf _{p \in X} f(p)$. Then, there exists a points $p, q \in X$ such that $f(p)=m_{1}, f(q)=m_{2}$ (i.e., f attains maximum M at p and minimum m at q)
Proof: We know that, If E is bounded and $y=\sup E$ and $X=\inf E$ then $x, y \in \bar{E}$. Since f is continuous and X is compact $\Rightarrow f(X)$ is closed and bounded [By the above Theorem 3.16] and since $f(X)$ is bounded. $m, M \in \overline{f(X)}=f(X) \quad(\because f(X)$ is closed $) \Rightarrow m, M \in f(X) \Rightarrow$ there exists $p, q \in X$ such that $M=f(p), m=f(q)$.

Theorem 3.18 Suppose f is continuous 1-1 mapping of a compact metric space X into a metric space Y. Then the inverse mapping f^{-1} defined on Y by $f^{-1}(f(X))=X$ is a continuous mapping of Y onto X.
Proof: Suppose f is a continuous $1-1$ mapping of a compact metric space X into a metric space Y and also $f^{-1}(f(X))=X$. To Prove: f^{-1} is continuous on Y, it is enough to prove that $\left(f^{-1}\right)(V)$ is open in Y for every open set V in X. Let V be a open set in $X \Rightarrow V^{c}$ is closed in X. Since X is compact, V^{c} is compact in X. Since f is continuous, $f\left(V^{c}\right)$ is compact in $Y \Rightarrow f\left(V^{c}\right)$ is closed in $Y \Rightarrow\left(f\left(V^{c}\right)\right)^{c}$ is closed in $Y \Rightarrow f(V)$ is open in $Y .(\because f$ is $1-1$ and onto $) \Rightarrow\left(f^{-1}(V)\right)^{-1}$ is open in $Y \Rightarrow f^{-1}$ is continuous on Y.

Definition 3.19 (Uniformly Continuous) Let X and Y be any two metric space then the $f: X \rightarrow Y$ is said it to be uniformly continuous on X if for every $\epsilon>0$ there exists a $S>0$ such that $d_{X}(p, q)<S \Rightarrow d_{Y}(f(p), f(q))<\epsilon$ $\forall p, q \in X$.

Theorem 3.20 Let f be a continuous mapping of a compact metric space X into a metric space Y then f is uniformly continuous. (i.e.) Continuous function defined on a compact metric space is uniformly continuous.
Proof: Let $\epsilon>0$ be given let f is continuous on $X \Rightarrow f$ is continuous at every point $p \in X$. Now, f is continuous at $p \Rightarrow$ there exists a positive real $\phi(p)$ such that $d_{X}(p, q)<\phi(p) \Rightarrow d_{Y}(f(p), f(q))<\epsilon \forall q \in X \ldots \ldots$.
Let $J(p)=N_{\frac{\phi(p)}{2}}\{p\} \Rightarrow J(p)$ is a closed in $X \Rightarrow J(p)$ is a open in $X . \therefore$ $\{J(p) \mid p \in X\}$ is an open cover for X. Since X is compact, there exists finitely may $p \in S . p_{1}, p_{2}, \ldots, p_{n}$ such that $X \subset \bigcup_{i=1}^{n} J\left(p_{i}\right)$. Let $S=$ $\min \left\{\left(\frac{\phi(p)}{2}, \ldots, \frac{\phi(p)}{2}\right)\right\}$. Clearly, $S>0$. Let p, q be points in X such that $d_{X}(p, q)<S$. Now,

$$
\begin{align*}
p \in X & \subset \bigcup_{i=1}^{n} J\left(p_{i}\right) \\
\Rightarrow p & \in J\left(p_{m}\right) \text { for some } m, 1 \leq m \leq n \\
\Rightarrow d_{X}\left(p, p_{m}\right) & <\frac{\phi\left(p_{m}\right)}{2}<\phi\left(p_{m}\right) \\
\Rightarrow d_{Y}\left(f(p), f\left(p_{m}\right)\right) & <\epsilon / 2 \ldots \ldots .(2)(b y(1)) \\
\text { Now } d_{X}\left(q, p_{m}\right) & <d_{X}(q, p)+d\left(p, p_{m}\right) \\
& <S+\frac{\phi\left(p_{m}\right)}{2} \\
& <\frac{\phi\left(p_{m}\right)}{2}+\frac{\phi\left(p_{m}\right)}{2} \\
& =\phi(m) \\
\Rightarrow d_{Y}\left(f(q), f\left(p_{m}\right)\right) & <\epsilon / 2 \text { by }(1) \ldots \ldots . .(3)
\end{align*}
$$

$$
\begin{aligned}
\Rightarrow d_{Y}(f(p), f(q)) & <d_{Y}\left(f(q), f\left(p_{m}\right)\right)+d_{Y}\left(f\left(p_{m}\right) f(q)\right) \\
& =\epsilon / 2+\epsilon / 2(\text { by }(2) \text { and }(3)) \\
\therefore d_{X}(p, q) & <S \Rightarrow d_{Y}(f(p), f(q))<\epsilon
\end{aligned}
$$

$\Rightarrow f$ is uniformly continuous on X.
Theorem 3.21 Let E be a non-compact set in \mathbb{R}^{1}. Then
(a) there exists a continuous function on E which is not bounded,
(b) there exists continuous and bounded function on which has no maximum if in addition E is bounded,
(c) there exists a continuous function on E which is not uniformly continuous.
Proof: Case(i): Suppose E is bounded.
(a) To Prove: f is continuous but not bounded. Since E is bounded, there exists a limit point of x_{0} of E such that $x_{0} \notin E .[\because E$ is not closed $]$. Define a map $f: E \rightarrow \mathbb{R}^{1}$ by $f(x)=\frac{1}{x-x_{0}}, x \in E . \therefore f$ is continuous on E. To Prove: f is unbounded on E. Since x_{0} is a limit point of $E . N_{r}\left(x_{0}\right) \cap E \neq \emptyset$ $\forall r>0 \Rightarrow$ there exists x_{1} such that $x_{1} \in N_{r}\left(x_{0}\right) \cap E \Rightarrow x_{1} \in N_{r}\left(x_{0}\right)$ and $x_{1} \in E$

$$
\begin{array}{r}
\Rightarrow\left|x_{1}-x_{0}\right|<r \text { and } x_{1} \in E \\
\Rightarrow \frac{1}{\left|x_{1}-x_{0}\right|}>\frac{1}{r} \text { and } x_{1} \in E \\
\Rightarrow\left|f\left(x_{1}\right)\right|>\frac{1}{r} \text { and } x_{1} \in E \forall r>0
\end{array}
$$

$\forall r>0$ there exists $x \in E$ such that $|f(x)|>\frac{1}{r} \Rightarrow f$ is unbounded on E.
(b) Define $g: E \rightarrow R$ by $g(x)=\frac{1}{1+\left(x-x_{0}\right)^{2}}, x \in E$. Clearly, g is continuous. Now, $0<g(x)<1 \Rightarrow g(x)$ is a bounded function. Clearly, $\sup _{x \in E} g(x)=1$. But $g(x)<1 \quad \forall x \in E . \therefore g$ has no maximum on E.
(c) Let $f: E \rightarrow R$ be defined by $f(x)=\frac{1}{x-x_{0}}, x \in E$, where x_{0} is a limit point of E. Clearly, f is continuous on E. Let $\epsilon>0$ be given. Let $S>0$ be arbitrary choose a point $x \in E$ such that $\left|x-x_{0}\right|<S$ and taking t very close to x_{0} so as to satisfy $|t-x|<S$. Then,

$$
\begin{aligned}
|f(t)-f(x)| & =\left|\frac{1}{t-x_{0}}-\frac{1}{x-x_{0}}\right| \\
& =\left|\frac{x-x_{0}-t+x_{0}}{\left(t-x_{0}\right)\left(x-x_{0}\right)}\right| \\
& =\frac{|x-t|}{\left|t-x_{0}\right|\left|x-x_{0}\right|} \\
& >\frac{1}{t-x_{0}}>\epsilon
\end{aligned}
$$

(If we choose $x \in\left(x_{0}-S, x_{0}\right), t \in\left(x_{0}, x_{0}+S\right)$ and $|x-t|<S$ or $t \in$ $\left(x_{0}-S, x_{0}\right), x \in\left(x_{0}, x_{0}+S\right)$ and $\left.|x-t|<S \Rightarrow|t-x|>\left|x-x_{0}\right|\right)$ So we
have taken t very close to x_{0} and we made the difference $|f(t)-f(x)|>\epsilon$ although $|t-x|<S$. Since this is true for every $S>0 \Rightarrow f$ is not uniformly continuous.
Case(ii): Suppose E is not bounded.
(a) Define $f: E \rightarrow R$ by $f(x)=x$. Clearly, f is continuous on E and f is not bounded on $E . \therefore$ there exists function on E which is not bounded.
(b) Define $g: E \rightarrow R$ by $g(x)=\frac{x^{2}}{1+x^{2}} \Rightarrow g$ is continuous. Now, as $x^{2}<$ $1+x^{2} \Rightarrow g(x)=\frac{x^{2}}{1+x^{2}}<1 . \therefore 0<g(x)<1 \quad \forall x \in E . \therefore g$ is a bounded. $\therefore g$ is a continuous and bounded function. $\sup _{x \in E} g(x)=1$. But g has no maximum on E.
(c) If the boundedness is omitted then the result fails. Let E be the set of all integers. Then every function defined on E is uniformly continuous on $E \Rightarrow$ for every $\epsilon>0$ choose $S<1$ such that $|X-Y|<S \Rightarrow|f(x)-f(y)|=0<\epsilon$

Continuity and Connectedness:

Theorem 3.22 If f is a continuous mapping on a metric space X into a metric space Y and E is a connected subset of X. Then $f(E)$ is connected. i.e., continuous image of a connected subset of a metric space is connected. Proof: Given E is connected subset of X. To Prove: $f(E)$ is a connected subset of Y. Suppose $f(E)$ is not connected. $\Rightarrow f(E)=A \cup B$ where A and B are non-empty separated sets. Put $G=E \cap f^{-1}(A)$ and $H=E \cap f^{-1}(B)$

$$
\begin{aligned}
G \cup H & =\left(E \cap f^{-1}(A)\right) \cup\left(E \cap f^{-1}(B)\right) \\
& =E \cap\left(f^{-1}(A) \cup f^{-1}(B)\right) \\
& =E \cap\left(f^{-1}(A \cup B)\right) \\
& =E \cap E \\
G \cup H & =E
\end{aligned}
$$

Clearly $G \neq \emptyset \quad H \neq \emptyset \quad(\because A \neq \emptyset, B \neq \emptyset)$. Claim: G and H are separated
sets. i.e., To Prove $\bar{G} \cap H=\emptyset, G \cap \bar{H}=\emptyset$. Now

$$
\begin{aligned}
G & =E \cap f^{-1}(A) \\
\Rightarrow G & \subset f^{-1}(A) \subset f^{-1}(\bar{A}) \\
\Rightarrow \bar{G} & \subset \overline{f^{-1}(\bar{A})}=f^{-1}(\bar{A})[\because \bar{A} \text { is closed and } \\
\Rightarrow f(\bar{G}) & \left.\subset f f^{-1}(\bar{A}) \subset \bar{A} \quad f \text { is continuous } \Rightarrow f^{-1}(\bar{A})\right] \\
\Rightarrow f(\bar{G}) & \subset \bar{A} \\
H & =E \cap f^{-1}(B) \\
\Rightarrow H & \subset f^{-1}(B) \Rightarrow f(H) \subset f f^{-1}(B)=B \\
\Rightarrow f(H) & \subset B \\
\Rightarrow f(\bar{G}) \cap f(H) & \subset \bar{A} \cap B=\emptyset(\because A \text { and } B \text { are separated sets }) \\
\Rightarrow f(\bar{G}) \cap f(H) & =\emptyset \\
\Rightarrow f(\bar{G} \cap H) & =\emptyset \\
\Rightarrow \bar{G} \cap H & =\emptyset \\
\text { similarly, } G \cap \bar{H} & =\emptyset
\end{aligned}
$$

$\therefore G$ and H are separated sets. $\Rightarrow E$ can be expressed as a union of two non-empty separated sets. $\Rightarrow E$ is not connected. $\Rightarrow \Leftarrow$ to E is connected. $\therefore f(E)$ is connected.

Theorem 3.23 Intermediate Value Theorem: Let f be a continuous real valued function on $[a, b]$. If $f(a)<f(b)$ and c is the number such that $f(a)<c<f(b)$ then there exists a point $x \in(a, b)$ such that $f(x)=c$.
Proof: Every interval in \mathbb{R} is connected and f is continuous. By the previous theorem, $f[a, b]$ is connected in $\mathbb{R} . \Rightarrow f[a, b]$ is interval in \mathbb{R}. Let $f(a), f(b) \in$ $f[a, b] \Rightarrow[f(a), f(b)] \subset f[a, b]$. Now, $f(a)<c<f(b) \Rightarrow c \in f[a, b] \Rightarrow c=$ $f(x)$ for some $x \in[a, b]$.

Remark 3.24 Converse not true.
Proof: If any two points x_{1} and x_{2} and for any member c between $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ there is a point x in $\left[x_{1}, x_{2}\right]$ such that $f(x)=c$ then f may be discontinuous. For example:

$$
f(x)= \begin{cases}\sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Choose $x_{1} \in\left(-\frac{\pi}{2}, 0\right), x_{2} \in\left(0, \frac{\pi}{2}\right)$. Clearly $x_{1}<x_{2} ; f\left(x_{1}\right)=$ negative $f\left(x_{2}\right)=$ positive. $\therefore f(0)=0 . f$ is continuous all the points except at 0 .

Differentiation:

Definition 3.25 Let f be real value function defined on $[a, b]$, for any $x \in$ $[a, b]$ form the quotient $\phi(t)=\frac{f(t)-f(x)}{t-x}, a<t<b, t \neq x$, and defined

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}
$$

provided the limit exists.
Remark 3.26 1. If f^{\prime} is defined at a point, we say that f is differentiable at x.
2. If f^{\prime} is defined at every point of a set $E \subset[a, b]$, we say that f is differentiable on E.

Theorem 3.27 Let f be defined on $[a, b]$. If f is differentiable at a point x in $[a, b]$, then f is continuous at x.
Proof: Given f is differentiable at x. (i.e.)

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \text { exists. }
$$

To Prove: f is continuous at x (i.e.)To Prove

$$
\lim _{t \rightarrow x} f(t)=f(x)
$$

Now

$$
\begin{aligned}
f(t)-f(x) & =\frac{f(t)-f(x)}{t-x}(t-x) \\
\lim _{t \rightarrow x}(f(t)-f(x)) & =\lim _{t \rightarrow x}\left[\frac{f(t)-f(x)}{t-x}(t-x)\right] \\
& =\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \cdot \lim _{t \rightarrow x}(t-x) \\
& =f^{\prime}(x) \cdot 0 \\
& =0 \\
\lim _{t \rightarrow x}(f(t)-f(x)) & =0 \\
\text { (or) } \lim _{t \rightarrow x} f(t) & =f(x)
\end{aligned}
$$

$\therefore f$ is continuous at x.
Remark 3.28 Converse of above theorem is not true. For example $f(x)=$ $|x|$ is continuous but not differentiable at origin.

Theorem 3.29 Suppose f and g are defined on $[a, b]$ and are differentiable at at point x in $[a, b]$ then $f+g, f g, \frac{f}{g}$ are differentiable at x.
(a) $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
(b) $(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
(c) $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{g^{2}(x)}, g(x) \neq 0$.

Proof: Given f and g are differentiable at x.

$$
\text { (i.e.) } f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \text { and } g^{\prime}(x)=\lim _{t \rightarrow x} \frac{g(t)-g(x)}{t-x} \text { exists. }
$$

(a)

$$
\begin{aligned}
\phi(t) & =\frac{(f+g)(t)-(f+g)(x)}{t-x} \\
& =\frac{f(t)+g(t)-(f(x)+g(x))}{t-x} \\
\phi(t) & =\frac{f(t)-f(x)}{t-x}+\frac{g(t)-g(x)}{t-x}
\end{aligned}
$$

Taking limits as $t \rightarrow x$

$$
\begin{aligned}
\lim _{t \rightarrow x} \phi(t) & =\lim _{t \rightarrow x}\left\{\frac{f(t)-f(x)}{t-x}+\frac{g(t)-g(x)}{t-x}\right\} \\
& =\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}+\lim _{t \rightarrow x} \frac{g(t)-g(x)}{t-x} \\
\text { (i.e. })(f+g)^{\prime}(x) & =f^{\prime}(x)+g^{\prime}(x)
\end{aligned}
$$

(i.e.) $(f+g)$ is differentiable at x.
(b) $(f g)^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$. Let $h=f g$. Now,

$$
\begin{aligned}
(h(t)-h(x)) & =(f g)(t)-(f g)(x) \\
& =f(t) g(t)-f(x) g(x) \\
& =f(t) g(t)-f(t) g(x)+f(t) g(x)-f(x) g(x) \\
& =f(t)(g(t)-g(x))+g(x)(f(t)-f(x)) \\
\frac{h(t)-h(x)}{t-x} & =f(t) \frac{(g(t)-g(x))}{t-x}+g(x) \frac{(f(t)-f(x))}{t-x} \\
\lim _{t \rightarrow x} \frac{h(t)-h(x)}{t-x} & =\lim _{t \rightarrow x}\left\{f(t) \frac{g(t)-g(x)}{t-x}+g(x) \frac{f(t)-f(x)}{t-x}\right\} \\
& =\lim _{t \rightarrow x} f(t) \lim _{t \rightarrow x} \frac{g(t)-g(x)}{t-x}+\lim _{t \rightarrow x} g(x) \lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \\
h^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \\
(f g)^{\prime}(x) & =f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\end{aligned}
$$

$f g$ is differentiable at x.
(c) $\left(\frac{f}{g}\right)^{\prime}(x)=\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{g^{2}(x)}$. Let $h=\frac{f}{g}$.

$$
\begin{aligned}
(h(t)-h(x)) & =\frac{f}{g}(t)-\frac{f}{g}(x) \\
& =\frac{f(t)}{g(t)}-\frac{f(x)}{g(x)} \\
& =\frac{f(t) g(x)-f(x) g(x)+f(x) g(x)-f(x) g(t)}{g(t) g(x)} \\
& =\frac{g(x)(f(t)-f(x))-f(x)(g(t)-g(x))}{g(t) g(x)} \\
\frac{h(t)-h(x)}{t-x} & =\frac{g(x)(f(t)-f(x))-f(x)(g(t)-g(x))}{g(t) g(x)(t-x)} \\
\lim _{t \rightarrow x} \frac{h(t)-h(x)}{t-x} & =\lim _{t \rightarrow x} \frac{g(x)}{g(t) g(x)}\left(\frac{f(t)-f(x)}{t-x}\right)-\lim _{t \rightarrow x} \frac{f(x)}{g(t) g(x)}\left(\frac{g(t)-g(x)}{t-x}\right) \\
& =\frac{g(x)}{g^{2}(x)} \lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}-\frac{f(x)}{g^{2}(x)} \lim _{t \rightarrow x} \frac{g(t)-g(x)}{t-x} \\
h^{\prime}(x) & =\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{g^{2}(x)} \\
\left(\frac{f}{g}\right)^{\prime}(x) & =\frac{g(x) f^{\prime}(x)-g^{\prime}(x) f(x)}{g^{2}(x)}
\end{aligned}
$$

Since $f^{\prime}(x), g^{\prime}(x)$ exists and $g(x) \neq 0,\left(\frac{f}{g}\right)^{\prime}(x)$ exists.
Example 3.30 (1) The derivative of any constant is zero.
(2) $f(x)=x \Rightarrow f^{\prime}(x)=1$
(3) $f(x)=n \Rightarrow f^{\prime}(x)=n x^{n-1}$

Theorem 3.31 Chain Rule: Suppose f is continuous on $[a, b], f^{\prime}(x)$ exists at some point x in $[a, b], g$ is defined on an interval I which contains the range of f, and g is differentiable at the point $f(x)$. If $h(t)=g(f(t)), a \leq$ $t \leq b$ then h is differentiable at x, and $h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$.
Proof: Given

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \text { exists, } t \in[a, b]
$$

Let $h(t)=g(f(t))$. To Prove: $h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$. Since f is differentiable at $x \in[a, b]$

$$
\begin{align*}
f^{\prime}(x) & =\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \text { exists, } t \in[a, b] \text { exists. } \\
(\text { i.e. }) f^{\prime}(x)+u(t) & =\frac{f(t)-f(x)}{t-x}, t \in[a, b] \text { where } \lim _{t \rightarrow x} u(t)=0 \\
\Rightarrow\left(f^{\prime}(x)+u(t)\right)(t-x) & =f(t)-f(x) \ldots . .(1) \tag{1}
\end{align*}
$$

Let $y=f(x)$. Now g is differentiable at $y(=f(x))$

$$
\begin{align*}
g^{\prime}(y) & =\lim _{s \rightarrow y} \frac{g(s)-g(y)}{s-y}, s \in I \\
(i . e .) g^{\prime}(y)+v(s) & =\frac{g(s)-g(y)}{s-y}, s \in I \text { where } \lim _{s \rightarrow y} v(s)=0 \\
\left(g^{\prime}(y)+v(s)\right)(s-y) & =g(s)-g(y) \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

Let $s=f(t)$. Now,

$$
\begin{aligned}
h(t)-h(x) & =g(f(t))-g(f(x)) \\
& =\left(g^{\prime}(f(x))+v(s)\right)(s-y)(b y(2)) \\
h(t)-h(x) & =g^{\prime}(f(x)+v(s))(f(t)-f(x)) \\
& =g^{\prime}(f(x)+v(s))\left(f^{\prime}(x)+u(t)\right)(t-x)(b y(1)) \\
\frac{h(t)-h(x)}{t-x} & =g^{\prime}(f(x)+v(s))\left(f^{\prime}(x)+u(t)\right) \\
\lim _{t \rightarrow x} \frac{h(t)-h(x)}{t-x} & =\lim _{t \rightarrow x}\left\{g^{\prime}(f(x)+v(s))\left(f^{\prime}(x)+u(t)\right)\right\} \\
h^{\prime}(x) & =\lim _{t \rightarrow x} g^{\prime}(f(x)+v(s)) \lim _{t \rightarrow x}\left(f^{\prime}(x)+u(t)\right) \\
& =\lim _{s \rightarrow y}\left(g^{\prime}(f(x))+v(s)\right) f^{\prime}(x) \\
& =g^{\prime}(f(x)) f^{\prime}(x) \\
\therefore h^{\prime}(x) & =g^{\prime}(f(x)) f^{\prime}(x)
\end{aligned}
$$

Example 3.32 Let

$$
f(x)= \begin{cases}x \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Find $f^{\prime}(x)(x \neq 0)$, and show that $f^{\prime}(0)$ does not exist.

Solution:

$$
\begin{aligned}
f(x) & =x \sin \frac{1}{x} \\
f^{\prime}(x) & =x \cos \left(\frac{1}{x}\right)\left(\frac{-1}{x^{2}}\right)+\sin \left(\frac{1}{x}\right) \\
& =-\frac{1}{x} \cos \left(\frac{1}{x}\right)+\sin \left(\frac{1}{x}\right) \\
& =\sin \left(\frac{1}{x}\right)-\left(\frac{1}{x}\right) \cos \left(\frac{1}{x}\right), x \neq 0 .
\end{aligned}
$$

since $x \neq 0 f^{\prime}(x)$ exists. To Prove: $f^{\prime}(0)$ does not exists.

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{f(t)-f(0)}{t-0} \\
& =\lim _{t \rightarrow 0} \frac{t \sin \frac{1}{t}-0}{t-0} \\
& =\lim _{t \rightarrow 0} \sin \frac{1}{t} \text { which does not exists. }
\end{aligned}
$$

$\therefore f^{\prime}(0)$ does not exists.
Example 3.33 Let

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Find $f^{\prime}(x)(x \neq 0)$, show that $f^{\prime}(0)=0$
Solution: Let

$$
\begin{aligned}
f(x) & =x^{2} \sin \frac{1}{x} \\
f^{\prime}(x) & =x^{2}\left(\cos \left(\frac{1}{x}\right)\right)\left(\frac{-1}{x^{2}}\right)+2 x \cdot \sin \frac{1}{x} \\
& =2 x \cdot \sin \frac{1}{x}-\cos \frac{1}{x}, x \neq 0 \\
f^{\prime}(0) & =\lim _{t \rightarrow 0} \frac{f(t)-f(0)}{t-0} \\
& =\lim _{t \rightarrow 0} \frac{x^{2} \sin \frac{1}{t}-0}{t-0} \\
& =\lim _{t \rightarrow 0} t \sin \frac{1}{t} \\
& =0\left(\because\left|t \sin \frac{1}{t}\right| \leq 1\right) \\
\therefore f^{\prime}(0)=0 &
\end{aligned}
$$

Mean Value Theorems:

Definition 3.34 Local Maximum, Local Minimum: Let f be a real function defined on a metrics space X. We say that f has local maximum at a point p in X if there exists $\delta>0$ such that $f(q) \leq f(p) \forall q \in X$ with $d(p, q)<\delta$. f has a local minimum at p in X, if $f(p) \leq f(q) \forall q \in X$ such that $d(p, q)<\delta$.

Theorem 3.35 Let f be defined on $[a, b]$; if f has a local maximum at a point $x \in(a, b)$ and if f^{\prime} exists, then $f^{\prime}(x)=0$. The analogous statement for local minimum is also true.
Proof: Case(i) Assume that f has local maximum at x. To Prove: $f^{\prime}(x)=$

0 . Since f has local maximum at x, there exists $\delta>0$ such that $(q, x)<$ $\delta \Rightarrow f(q) \leq f(x)$

$$
\begin{align*}
\text { If } x-\delta<t<x & \text { then } \frac{f(t)-f(x)}{t-x}
\end{align*} \geq 0 .
$$

Since $f^{\prime}(x)$ exists, $(1),(2) \Rightarrow f^{\prime}(x)=0$.
Case(ii) Assume that f has a local minimum at x. We show that $f^{\prime}(x)=0$. Then there exists $\delta>0$ such that $d(q, x)<\delta \Rightarrow f(q) \geq f(x)$

$$
\begin{align*}
& \text { If } x-\delta<t<x \text { then } \frac{f(t)-f(x)}{t-x}
\end{aligned} \leq 0 \quad \begin{aligned}
\Rightarrow \lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} & \leq 0 \\
\text { If } x<t<x+\delta \text { then } \frac{f(t)-f(x)}{t-x} & \geq 0 \\
\Rightarrow \lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} & \geq 0 \tag{3}\\
\Rightarrow f^{\prime}(x) & \geq 0 \ldots
\end{align*}
$$

Since $f^{\prime}(x)$ exists, and from (3) and (4) we get $f^{\prime}(x)=0$.
Theorem 3.36 Generalised Mean Value Theorem: If f and g are continuous real functions on $[a, b]$, which are differentiable in (a, b), then there is a point $x \in(a, b)$ at which $[f(b)-f(a)] g^{\prime}(x)=[g(b)-g(a)] f^{\prime}(x)$. proof: Let $h(t)=[f(b)-f(a)] g(t)-[g(b)-g(a)] f(t), t \in[a, b]$. Since f and g are differentiable in $(a, b), h(t)$ is also differentiable in (a, b). Now,

$$
\begin{aligned}
h(a) & =[f(b)-f(a)] g(a)-[g(b)-g(a)] f(a) \\
& =f(b) g(a)-f(a) g(a)-g(b) f(a)+g(a) f(a) \\
& =f(b) g(a)-g(b) f(a) \\
h(b) & =[f(b)-f(a)] g(b)-[g(b)-g(a)] f(b) \\
& =f(b) g(b)-f(a) g(b)-g(b) f(b)+g(a) f(b) \\
& =g(a) f(b)-f(a) g(b)
\end{aligned}
$$

Claim: $h^{\prime}(x)=0$ for some $x \in(a, b)$. If $h(t)$ is a constant then $h^{\prime}(x)=$ $0 \forall x \in(a, b)$. If $h(t)<h(a), a<t<b$, then by Intermediate value theorem, there exists x in (a, b) at which h is minimum. $\therefore h^{\prime}(x)=0 \quad$ (by Theorem 3.35). If $h(t)>h(a)$ then h attains its maximum at some point $x \in(a, b) . \therefore$ $h^{\prime}(x)=0 \quad$ (by Theorem 3.35) (i.e.)

$$
\begin{aligned}
(f(b)-f(a)) g^{\prime}(x)-(g(b)-g(a)) f^{\prime}(x) & =0 \\
(f(b)-f(a)) g^{\prime}(x) & =(g(b)-g(a)) f^{\prime}(x)
\end{aligned}
$$

Theorem 3.37 Mean Value Theorem: If f is a real continuous function on $[a, b]$ which is differentiable at (a, b) then there is a point $x \in(a, b)$ at which $f(b)-f(a)=(b-a) f^{\prime}(x)$.
Proof: Put $g(x)=x$ in theorem 3.36. $\therefore g^{\prime}(x)=1 \Rightarrow(f(b)-f(a))=$ $(b-a) f^{\prime}(x)$.

Theorem 3.38 Suppose f is differentiable in (a, b).
(a) If $f^{\prime}(x) \geq 0 \forall x \in(a, b)$, then f is monotonically increasing.
(b) If $f^{\prime}(x)=0 \forall x \in(a, b)$, then f is a constant.
(c) If $f^{\prime}(x) \leq 0 \forall x \in(a, b)$, then f is monotonically decreasing.

Proof: (a)By theorem 3.37, If $x_{1}<x_{2}$, then there exists $x_{1}<x<x_{2}$ such that $f\left(x_{2}\right)-f\left(x_{1}\right)=\left(x_{2}-x_{1}\right) f^{\prime}(x)$.
If $f^{\prime}(x) \geq 0$ then $(1) \Rightarrow f\left(x_{2}\right)-f\left(x_{1}\right) \geq 0\left(\because\left(x_{2}-x_{1}\right) f^{\prime}(x) \geq 0\right) \Rightarrow f\left(x_{1}\right) \leq$ $f\left(x_{2}\right)$ (i.e.) f is an increasing function
(b) If $f^{\prime}(x)=0$ then $(1) \Rightarrow f\left(x_{2}\right)-f\left(x_{1}\right)=0 \Rightarrow f\left(x_{2}\right)=f\left(x_{1}\right) . \quad \therefore f$ is constant.
(c) If $f^{\prime}(x) \leq 0$ then $(1) \Rightarrow f\left(x_{2}\right)-f\left(x_{1}\right) \leq 0 \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right) . \therefore f$ is an decreasing function.

The Continuity Of Derivatives

Theorem 3.39 Suppose f is a real differentiable function on $[a, b]$ and suppose $f^{\prime}(a)<\lambda<f^{\prime}(b)$, then there is a point $x \in(a, b)$ such that $f^{\prime}(x)=\lambda$. A similar result holds if $f^{\prime}(a)>\lambda>f^{\prime}(b)$.
Proof: Let $g(t)=f(t)-\lambda t, t \in[a, b]$ then, $g^{\prime}(t)=f^{\prime}(t)-\lambda ; g^{\prime}(a)=$ $f^{\prime}(a)-\lambda<0 . \therefore$ there exists $a<t_{1}<b$ such that $g\left(t_{1}\right)<g(a)$. Also, $g^{\prime}(b)=f^{\prime}(b)-\lambda>0 . \therefore$ there exists $a<t_{2}<b$ such that $g\left(t_{2}\right)<g(b) . \therefore g$ attains minimum at $x \in(a, b) . \quad \therefore g^{\prime}(x)=0 \quad$ (by Theorem 3.35) (i.e.) $f^{\prime}(x)-\lambda=0 \Rightarrow f^{\prime}(x)=\lambda$.

Corollary 3.40 If f is differentiable on $[a, b]$, then f^{\prime} is cannot have any simple discontinuity on $[a, b]$. But f^{\prime} may have discontinuity of second kind. Proof: f^{\prime} takes every value between $f(a)$ and $f(b)$. Let $a<x<b$. If f^{\prime} is not continuous at x, then

1. $f^{\prime}(x+), f^{\prime}(x-)$ exists,
2. $f^{\prime}(x+) \neq f^{\prime}(x-)$,
3. $f^{\prime}(x-)=f^{\prime}(x+) \neq f^{\prime}(x) \Rightarrow \Leftarrow$
$\therefore f^{\prime}$ cannot have any simple discontinuity. In Example $3.33 f^{\prime}$ has a discontinuity of second kind at $x \in[a, b]$.

Theorem 3.41 L'Hospital's Rule: Suppose f and g are differentiable in (a, b) and $g^{\prime}(x) \neq 0 \forall x \in(a, b)$ where $-\infty \leq a<b \leq \infty$. Suppose $\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow A$ as $x \rightarrow a$. \qquad (1).

If $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a \ldots \ldots$. (2) (or) if $g(x) \rightarrow \infty$ as $x \rightarrow a \ldots \ldots$ (3), then $\frac{f(x)}{g(x)} \rightarrow A$ as $x \rightarrow a \ldots \ldots$ (4). (The analogous statement is true if $x \rightarrow b$ (or) if $g(x) \rightarrow-\infty$ in (3)).
Proof: Case(i): Let $-\infty \leq A<\infty$. We choose r and q such that $A<r<$ q. Given

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A \tag{i}
\end{equation*}
$$

Then there exists $c \in(a, b)$ such that $a<x<c \Rightarrow \frac{f^{\prime}(x)}{g^{\prime}(x)}<r$.
Now if $a<x<y<c$ then by generalised mean value theorem, there exists $t \in(a, b)$ such that $\frac{f(x)-f(y)}{g(x)-g(y)}=\frac{f^{\prime}(t)}{g^{\prime}(t)}<r$.
Suppose $f(x) \rightarrow 0$ and $g(x) \rightarrow 0$ as $x \rightarrow a$. Then by taking limits as $x \rightarrow a$, then (ii) we get $\frac{f(y)}{g(y)} \leq r<q \ldots \ldots$. . (iii)
Suppose $g(x) \rightarrow \infty$ as $x \rightarrow a$, then by keeping y fixed in (ii) we can find $c_{1} \in(a, y)$ such that $g(x)>g(y)$ and $g(x)>0 \forall x \in\left(a, c_{1}\right)$. Multiply (ii) by $\frac{g(x)-g(y)}{g(x)}$, we get

$$
\begin{aligned}
\frac{f(x)-f(y)}{g(x)} & <r\left(\frac{g(x)-g(y)}{g(x)}\right) \\
\Rightarrow \frac{f(x)}{g(x)}-\frac{f(y)}{g(x)} & <r\left(1-\frac{g(y)}{g(x)}\right) \\
\Rightarrow \frac{f(x)}{g(x)} & <r-r \frac{g(y)}{g(x)}+\frac{f(y)}{g(x)}
\end{aligned}
$$

Since $g(x) \rightarrow \infty$ as $x \rightarrow a$, there exists $c_{2} \in\left(a, c_{1}\right)$ such that $\frac{f(x)}{g(x)}<r \forall x \in$ $\left(a, c_{2}\right)$ (or) $\frac{f(x)}{g(x)}<q \forall x \in\left(a, c_{2}\right) \ldots \ldots$ (iv)
suppose $-\infty<A \leq \infty$. By choosing $p<A$ as above, we can show that there exists $c_{3} \in(a, b)$ such that $p<\frac{f(x)}{g(x)} \forall a<x<c_{3} \ldots . .(\mathrm{v})$
Thus in all cases $\frac{f(x)}{g(x)} \rightarrow A$ as $x \rightarrow a$. Hence

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Derivatives Of Higher Order

Definition 3.42 If f has a derivative f^{\prime} on an interval and if f^{\prime} is differentiable, we see the second derivative $f^{\prime \prime}$ exists. Similarly if $f^{n-1}(x)$ is differentiable we say $f^{(n)}$ exists.

Theorem 3.43 Taylor's Theorem: Suppose f is a real function on $[a, b], n$ is a positive integer, $f^{(n-1)}$ is continuous on $[a, b], f^{(n)}(t)$ exists $\forall t \in(a, b)$. Let α, β be distinct points of $[a, b]$ and define

$$
p(t)=\sum_{n=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k}
$$

then there exists a point $x \in(\alpha, \beta)$ such that $f(\beta)=p(\beta)+\frac{f^{(n)}(x)}{n!}(\beta-\alpha)^{n}$. Proof: If $n=1$, then $f(\beta)=f(\alpha)+f^{\prime}(x)(\beta-\alpha) ; \frac{f(\beta)-f(\alpha)}{\beta-\alpha}=f^{\prime}(x)$. This is just the mean value theorem. Suppose $n>1$. Define a number M such that $f(\beta)=p(\beta)+M(\beta-\alpha)^{n}$ \qquad
Let $g(t)=f(t)-p(t)-M(t-\alpha)^{n}$
Now,

$$
\begin{align*}
g(\alpha) & =f(\alpha)-p(\alpha)-M(\alpha-\alpha)^{n} \\
& =f(\alpha)-p(\alpha) \\
g(\alpha) & =f(\alpha)-f(\alpha)(\because p(\alpha)=f(\alpha)) \\
& =0 \\
g(\beta) & =f(\beta)-p(\beta)-M(\beta-\alpha)^{n} \\
& =0(b y(1)) \ldots \ldots .(4) \tag{4}
\end{align*}
$$

$$
\text { Also } g^{(n)}(t)=f^{(n)}(t)-0-M n!
$$

$$
g^{(k)}(\alpha)=f^{(k)}(\alpha)-p^{(k)}(\alpha)
$$

$$
=f^{(k)}(\alpha)-f^{(k)}(\alpha)
$$

$$
=0 \ldots \ldots(6)
$$

(i.e.) $g(\alpha)=g^{\prime}(\alpha)=\cdots=g^{n-1}(\alpha)=0$. Since $g(\alpha)=0$ and $g(\beta)=0$, there exists $x_{1} \in(\alpha, \beta)$, by mean value theorem, such that $g^{\prime}\left(x_{1}\right)=0$. Now since $g^{\prime}(\alpha)=0 ; g^{\prime}\left(x_{1}\right)=0$ again by mean value theorem there exists $x_{2} \in\left(\alpha, x_{1}\right)$ such that $g "\left(x_{2}\right)=0$. Proceeding this way we get $\alpha<x_{n}<x_{n-1}$, such that $g^{(n)}\left(x_{n}\right)=0$ (i.e.) $f^{(n)}\left(x_{n}\right)-M n!=0 \quad$ (by (5)). $\therefore M=\frac{f^{n}\left(x_{n}\right)}{n!}$, sub M in $(1) \Rightarrow f(\beta)=p(\beta)+\frac{f^{(n)}\left(x_{n}\right)}{n!}(\beta-\alpha)^{n}, \forall x \in\left(\alpha, x_{n-1}\right)$

4. UNIT IV

The Riemann-Steiltjes integral and Sequences and series of functions

Definition 4.1 Let $[a, b]$ be an interval. By a partition P of $[a, b]$ we mean a finite set of points $x_{0}, x_{1}, \ldots, x n$, where $a=x_{0} \leq x_{1} \leq, \ldots, \leq x_{i-1} \leq x_{i} \leq$ $, \ldots, \leq x_{n}=b$.

Remark 4.2 1. $\Delta x_{i}=x_{i}-x_{i-1} \forall i=1,2, \ldots, n$.
2. Let f be a bounded real function on $[a, b]$ then $m_{i}=\inf f(x), M_{i}=$ $\sup f(x) \quad \forall x_{i-1} \leq x \leq x_{i}$.
3.

$$
\begin{aligned}
L(P, f) & =\sum_{i=1}^{n} m_{i} \Delta x_{i} \\
U(P, f) & =\sum_{i=1}^{n} m_{i} \Delta x_{i} \\
L(P, f) & \leq \int_{a}^{b} f(x) d x \leq U(P, f) \\
L(P, f) & \leq U(P, f)
\end{aligned}
$$

4. $\int_{\underline{a}}^{b} f(x) d x=\sup L(P, f)$
5. $\int_{a}^{\bar{b}} f(x) d x=\inf U(P, f)$ (The inf and sup are taken over all partition P of $[a, b])$.
6. If the upper and lower reimann interval over is same then f is said to be Reimann integrable over $[a, b] . f \in \mathcal{R}(\mathcal{R}$ is the set of all Reimann integrable functions)
7.

$$
\int_{\underline{a}}^{b} f(x) d x=\int_{a}^{\bar{b}} f(x) d x=\int_{a}^{b} f(x) d x
$$

Result 4.3 For every partition P of $[a, b]$ and every bounded function f there exists 2 real numbers m, M such that $m(b-a) \leq L(P, f) \leq U(P, f) \leq$ $M(b-a)$.
Solution: Let $m=\inf f(x)$ and $M=\sup f(x), a \leq x \leq b$. Let $P=$
$\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be the given partition of $[a, b]$,

$$
\begin{align*}
m & \leq m_{i} \leq M_{i} \leq M \\
m \Delta x_{i} & \leq m_{i} \Delta x_{i} \leq M_{i} \Delta x_{i} \leq M \Delta x_{i}\left(\Delta x_{i} \geq 0\right) \\
\sum_{i=1}^{n} m \Delta x_{i} & \leq \sum_{i=1}^{n} m_{i} \Delta x_{i} \leq \sum_{i=1}^{n} M_{i} \Delta x_{i} \leq \sum_{i=1}^{n} M \Delta x_{i} \\
m\left(\sum_{i=1}^{n} \Delta x_{i}\right) & \leq L(P, f) \leq U(P, f) \leq M \sum_{i=1}^{n} \Delta x_{i} \ldots \ldots .(1) \\
\text { Now, } \sum_{i=1}^{n} \Delta x_{i} & =\Delta x_{1}+\Delta x_{2}+\ldots+\Delta x_{n} \\
& =\left(x_{1}-x_{0}\right)+\left(x_{2}-x_{1}\right)+\ldots+\left(x_{n}-x_{n-1}\right) \\
& =x_{n}-x_{0} \\
& =b-a \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

sub (2) in (1) we get, $m(b-a) \leq L(P, f) \leq U(P, f) \leq M(b-a)$.
Definition 4.4 Let α be a monotonically increasing function on $[a, b]$. Corresponding to each partition P of $[a, b]$ we define $\Delta \alpha_{i}=\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)$. Clearly, $\Delta \alpha_{i} \geq 0$

$$
\begin{aligned}
L(P, f, \alpha) & =\sum_{i=1}^{n} m_{i} \Delta \alpha_{i} \\
U(P, f, \alpha) & =\sum_{i=1}^{n} M_{i} \Delta \alpha_{i} \\
\sup L(P, f, \alpha) & =\int_{\underline{a}}^{b} f d \alpha \\
U(P, f, \alpha) & =\int_{a}^{\bar{b}} f d \alpha
\end{aligned}
$$

where infimum and suprimum are taken over all partitions. If

$$
\int_{\underline{a}}^{b} f d \alpha=\int_{a}^{\bar{b}} f d \alpha
$$

then f is Reimann Stieljes integrable with respect to,

$$
\int_{a}^{b} f d \alpha=\int_{\underline{a}}^{b} f d \alpha=\int_{a}^{\bar{b}} f d \alpha
$$

we also write $f \in \mathcal{R}(\alpha)$.
Note 4.5 By taking $\alpha(x)=x$, we see that the Reimann integral is the special case of Riemann's Stieltjes integral.

Definition 4.6 The partition P^{*} of $[a, b]$ is called a refinement of P if $P \subset$ P^{*}. Given two partition P_{1} and P_{2}, we say that $P=P_{1} \cup P_{2}$ is the common refinement of P_{1} and P_{2}.

Theorem 4.7 If P^{*} is an refinement of P, then $L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right)$ and $U\left(P^{*}, f, \alpha\right) \leq U(P, f, \alpha)$.
Proof: Let $P=\left\{x_{0}, x_{1}, \ldots, x_{i-1}, x_{i}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ and let $P^{*}=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{i-1}, x^{*}, x_{i}, \ldots, x_{n}\right\}$ be an refinement of P. Let

$$
\begin{aligned}
& m_{i}=\inf f(x), x_{i-1} \leq x \leq x_{i} \\
& w_{1}=\inf f(x), x_{i-1} \leq x \leq x^{*} \\
& w_{2}=\inf f(x), x^{*} \leq x \leq x_{i}
\end{aligned}
$$

$\therefore w_{1} \geq m_{i}$ and $w_{2} \geq m_{i}$. Now,

$$
\begin{align*}
L\left(P^{*}, f, \alpha\right)= & m_{1} \Delta \alpha_{1}+m_{2} \Delta \alpha_{2}+\ldots+m_{i-1} \Delta \alpha_{i-1}+w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right) \\
& +w_{2}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right)+m_{i+1} \Delta \alpha_{i+1} \ldots+m_{n} \Delta \alpha_{n} \ldots \ldots(1) \\
L(P, f, \alpha)= & m_{1} \Delta \alpha_{1}+m_{2} \Delta \alpha_{2}+\ldots+m_{i-1} \Delta \alpha_{i-1}+m_{i} \Delta \alpha_{i} \\
& +m_{i+1}\left(\Delta \alpha_{i+1}\right)+\ldots+m_{n} \Delta \alpha_{n} \ldots . .(2) \tag{2}
\end{align*}
$$

$(1)-(2) \Rightarrow$

$$
\begin{aligned}
& L\left(P^{*}, f, \alpha\right)-L(P, f, \alpha)= w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right)+w_{2}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right)-m_{i} \Delta \alpha_{i} \\
&= w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right)+w_{2}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right) \\
&-m_{i}\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right) \\
&= w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right)+w_{2}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right) \\
&-m_{i}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right)-m_{i}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right) \\
&=\left(w_{1}-m_{i}\right)\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right) \\
&+\left(w_{2}-m_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right) \\
& \geq 0\left(\because w_{1} \text { and } w_{2} \geq m_{i}\right) \\
& L\left(P^{*}, f, \alpha\right)-L(P, f, \alpha) \geq 0 \\
& \Rightarrow L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right) \\
& \therefore L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right)
\end{aligned}
$$

Let $P^{*}=\left\{x_{0}, x_{1}, \ldots, x_{i-1}, x^{*}, x_{i}, \ldots, x_{n}\right\}$ be refinement of P. Let

$$
\begin{aligned}
M_{i} & =\sup f(x), x_{i-1} \leq x \leq x_{i} \\
w_{1} & =\sup f(x), x_{i-1} \leq x \leq x^{*} \\
w_{2} & =\sup f(x), x^{*} \leq x \leq x_{i} \\
\therefore w_{1} & \geq M_{i} \text { and } w_{2} \geq M_{i}
\end{aligned}
$$

Now

$$
\begin{align*}
U\left(P^{*}, f, \alpha\right)= & M_{1} \Delta \alpha_{1}+M_{2} \Delta \alpha_{2}+\ldots+M_{i-1} \Delta \alpha_{i-1}+w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right) \\
& +w_{2}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right)+M_{i+1} \Delta \alpha_{i+1}+\ldots+M_{n} \Delta \alpha_{n} \ldots \ldots(1) \\
U(P, f, \alpha)= & M_{1} \Delta \alpha_{1}+M_{2} \Delta \alpha_{2}+\ldots+M_{i-1} \Delta \alpha_{i-1}+M_{i} \Delta \alpha_{i} \\
& +M_{i+1}\left(\Delta \alpha_{i+1}\right)+\ldots+M_{n} \Delta \alpha_{n} \ldots \ldots(2) \tag{2}
\end{align*}
$$

(1)-(2) \Rightarrow

$$
\begin{aligned}
U\left(P^{*}, f, \alpha\right)-U(P, f, \alpha)= & w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right)+w_{2}\left(\alpha\left(x_{i}\right)\right. \\
& \left.-\alpha\left(x^{*}\right)\right)-M_{i} \Delta \alpha_{i} \\
= & w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right)+w_{2}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right) \\
& -M_{i}\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right) \\
= & w_{1}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right)+w_{2}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right) \\
& -M_{i}\left(\alpha\left(x_{i}\right)-\alpha\left(x^{*}\right)\right)-M_{i}\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right) \\
= & \left(w_{1}-M_{i}\right)\left(\alpha\left(x^{*}\right)-\alpha\left(x_{i-1}\right)\right) \\
& +\left(w_{2}-M_{i}\right)\left(\alpha\left(x_{i}-\alpha\left(x^{*}\right)\right)\right) \\
\leq & 0\left(\because w_{1} \text { and } w_{2} \leq M\right) \\
(i . e .) ~ U\left(P^{*}, f, \alpha\right)-U(P, f, \alpha) \leq & 0 \\
\Rightarrow U\left(P^{*}, f, \alpha\right) \leq & U(P, f, \alpha) \\
\therefore U\left(P^{*}, f, \alpha\right) \leq & U(P, f, \alpha)
\end{aligned}
$$

If P^{*} contains k-points more than P, we repeat this reasoning k-times and get the result.

Theorem 4.8

$$
\int_{\underline{a}}^{b} f d \alpha \leq \int_{a}^{\bar{b}} f d \alpha
$$

Proof: Let P_{1} and P_{2} be two partition of $[a, b]$ and let $P^{*}=P_{1} U P_{2}$. (i.e.) P^{*} is a common refinement of P_{1} and $P_{2} . L\left(P_{1}, f, \alpha\right) \leq L\left(P^{*}, f, \alpha\right) \leq$ $U\left(P^{*}, f, \alpha\right) \leq U\left(P_{2}, f, \alpha\right) \Rightarrow L\left(P_{1}, f, \alpha\right) \leq U\left(P_{2}, f, \alpha\right)$. Keeping P_{1} fixed and taking infimum over all partition P_{2}, we get

$$
L(P, f, \alpha) \leq \int_{a}^{\bar{b}} f d \alpha
$$

Now, by taking suprimum over all partition P_{1} we get

$$
\int_{\underline{a}}^{b} f d \alpha \leq \int_{a}^{\bar{b}} f d \alpha
$$

Theorem 4.9 Criterion for Riemann Integrability: Let $f \in \mathcal{R}(\alpha)$ iff $\forall \in>0$, there exists a partition P such that $U(P, f, \alpha)-L(P, f, \alpha)<\in$.

Proof: Let $\in>0$, there exists a partition P such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$ Claim: $f \in \mathcal{R}(\alpha)$. We know that

$$
\begin{aligned}
U(P, f, \alpha) & \geq \int_{a}^{\bar{b}} f d \alpha \ldots . .(1) \\
L(P, f, \alpha) & \leq \int_{\underline{a}}^{b} f d \alpha \ldots \ldots(2) \\
(2) \times-1 \Rightarrow-L(P, f, \alpha) & \geq-\int_{\underline{a}}^{b} f d \alpha \ldots . .(3) \\
(1)+(3) U(P, f, \alpha)-L(P, f, \alpha) & \geq \int_{a}^{\bar{b}} f d \alpha-\int_{\underline{a}}^{b} f d \alpha \\
(\text { or }) \int_{a}^{\bar{b}} f d \alpha-\int_{\underline{a}}^{b} f d \alpha & \leq U(P, f, \alpha)-L(P, f, \alpha) \\
& <\epsilon
\end{aligned}
$$

Since ϵ is arbitrary,

$$
\int_{\underline{a}}^{b} f d \alpha=\int_{a}^{\bar{b}} f d \alpha .(i . e .) f \in \mathcal{R}(\alpha)
$$

Conversely: Assume $f \in \mathcal{R}(\alpha)$. To Prove: let $\epsilon>0$, there exists a partition P such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$
let $\epsilon>0$ be given
Then there exists two partition P_{1} and P_{2} such that
$U\left(P_{1}, f, \alpha\right)<\int_{a}^{b} f d \alpha+\frac{\epsilon}{2} \ldots .(4)$ and $\int_{a}^{b} f d \alpha-\frac{\epsilon}{2}<L\left(P_{2}, f, \alpha\right) \ldots \ldots .(5)$
Let $P=P_{1} U P_{2}$ (i.e.) P is the common refinement of P_{1} and P_{2}
Now

$$
\begin{aligned}
U(P, f, \alpha) & \leq U\left(P_{1}, f, \alpha\right) \\
& \leq \int_{a}^{b} f d \alpha+\frac{\epsilon}{2}(\text { by }(4)) \\
& <L\left(P_{2}, f, \alpha\right)+\frac{\epsilon}{2}+\frac{\epsilon}{2}(\text { by }(5)) \\
& =L\left(P_{2}, f, \alpha\right)+\epsilon \\
& \leq L(P, f, \alpha)+\epsilon
\end{aligned}
$$

$$
\therefore U(P, f, \alpha)-L(P, f, \alpha)<\epsilon
$$

Theorem 4.10 Let P be a partition $\in: U(P, f, \alpha)-L(P, f, \alpha)<\epsilon \ldots(1)$
(a) if (1) holds for some P and ϵ then (1) holds for every refinement of P.
(b) if (1) holds for $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and s_{i}, t_{i} are arbitrary points in [$\left.x_{i-1}, x_{i}\right]$ then

$$
\sum_{i=1}^{n}\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right| \Delta \alpha_{i}<\epsilon
$$

(c) if $f \in \mathcal{R}(\alpha)$ and the hypothesis of (b) holds then

$$
\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta \alpha_{i}-\int_{a}^{b} f d \alpha\right|<\epsilon
$$

Proof: (a) Let P^{*} be a refinement of P. We know that

$$
\begin{aligned}
U\left(P^{*}, f, \alpha\right) & \leq U(P, f, \alpha) \ldots \ldots(2) \\
L\left(P^{*}, f, \alpha\right) & \leq L(P, f, \alpha)(\text { by Theorem 4.7) } \\
-L\left(P^{*}, f, \alpha\right) & \leq-L(P, f, \alpha) \ldots \ldots(3)
\end{aligned}
$$

$(2)+(3)$ gives

$$
\begin{aligned}
U\left(P^{*}, f, \alpha\right)-L\left(P^{*}, f, \alpha\right) & \leq U(P, f, \alpha)-L(P, f, \alpha) \\
& <\epsilon(\text { by }(1)) \\
\text { (i.e.) } U\left(P^{*}, f, \alpha\right)-L\left(P^{*}, f, \alpha\right) & <\epsilon
\end{aligned}
$$

(b) $s_{i}, t_{i} \in\left[x_{i-1}, x_{i}\right] ; f\left(s_{i}\right), f\left(t_{i}\right) \in f\left[x_{i-1}, x_{i}\right] ; m_{i} \leq f\left(s_{i}\right), f\left(t_{i}\right) \leq M_{i}$

$$
\begin{aligned}
\therefore\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right| & \leq M_{i}-m_{i}\left(\because M_{i}-m_{i} \geq 0\right) \\
\Rightarrow\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right| \Delta \alpha_{i} & \leq\left(M_{i}-m_{i}\right) \Delta \alpha_{i} \\
\Rightarrow \sum_{i=1}^{n}\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right| \Delta \alpha_{i} & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta \alpha_{i} \\
& =\sum_{i=1}^{n} M_{i} \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i} \Delta \alpha_{i} \\
& =U(P, f, \alpha)-L(P, f, \alpha)(\text { by }(1)) \\
\therefore \sum_{i=1}^{n}\left|f\left(s_{i}\right)-f\left(t_{i}\right)\right| \Delta \alpha_{i} & <\epsilon
\end{aligned}
$$

(c) We have

$$
\begin{align*}
m_{i} & \leq f\left(t_{i}\right) \leq M_{i} \\
\Rightarrow m_{i} \Delta \alpha_{i} & \leq f\left(t_{i}\right) \Delta \alpha_{i} \leq M_{i} \Delta \alpha_{i} \\
\Rightarrow \sum_{i=1}^{n} m_{i} \Delta \alpha_{i} & \leq \sum_{i=1}^{n} f\left(t_{i}\right) \Delta \alpha_{i} \leq \sum_{i=1}^{n} M_{i} \Delta \alpha_{i} \\
\Rightarrow L(P, f, \alpha) & \leq \sum_{i=1}^{n} f\left(t_{i}\right) \Delta \alpha_{i} \leq U(P, f, \alpha) . \tag{4}\\
L(P, f, \alpha) & \leq \int_{a}^{b} f d \alpha \leq U(P, f, \alpha) \ldots \ldots(5)
\end{align*}
$$

(4) and (5) \Rightarrow

$$
\begin{aligned}
\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta \alpha_{i}-\int_{a}^{b} f d \alpha\right| & \leq U(P, f, \alpha)-L(P, f, \alpha) \\
& =\epsilon(\text { by }(1)) \\
\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta \alpha_{i}-\int_{a}^{b} f d \alpha\right| & <\epsilon
\end{aligned}
$$

Theorem 4.11 If f is continuous on $[a, b]$ then $f \in \mathcal{R}(\alpha)$.
Proof: Let $\epsilon>0$ be given. Choose $\eta>0$ such that $[\alpha(b)-\alpha(a)] \eta<\epsilon \ldots$ (1)
Since f is continuous on $[a, b]$ and $[a, b]$ is compact, f is uniformly continuous.
Then there exists $\delta>0$ such that $|x-\epsilon|<\delta \Rightarrow|f(x)-f(\epsilon)|<\eta \ldots$. (2)
Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of $[a, b]$ such that $\Delta x_{i}<\delta \therefore$ (2) guarantees that $\left|M_{i}-m_{i}\right|<\eta$ (i.e.) $M_{i}-m_{i}<\eta \ldots . .(3)$
Now,

$$
\begin{aligned}
U(P, f, \alpha)-L(P, f, \alpha) & =\sum_{i=1}^{n} M_{i} \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i} \Delta \alpha_{i} \\
& =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta \alpha_{i} \\
& <\eta\left(\sum_{i=1}^{n} \Delta \alpha_{i}\right)(\text { by }(3)) \\
& =\eta\left[\Delta \alpha_{1}+\Delta \alpha_{2}+\ldots+\Delta \alpha_{n}\right] \\
& =\eta\left[\left(\alpha\left(x_{1}\right)-\alpha\left(x_{0}\right)\right)+\left(\alpha\left(x_{2}\right)-\alpha\left(x_{1}\right)\right)+\ldots+\left(\alpha\left(x_{n}\right)-\alpha\left(x_{n-1}\right)\right)\right] \\
& =\eta\left(\alpha\left(x_{n}\right)-\alpha\left(x_{0}\right)\right) \\
& =\eta[\alpha(b)-\alpha(a)] \\
& <\epsilon
\end{aligned}
$$

$\therefore U(P, f, \alpha)-L(P, f, \alpha)<\epsilon($ by Theorem 4.9)
By Theorem 4.9, $f \in \mathcal{R}(\alpha)$.

Theorem 4.12 If f is monotonic on $[a, b]$ and if α is continuous in $[a, b]$, then $f \in \mathcal{R}(\alpha)$.
Proof: Let
epsilon >0 be given. For every positive integer n, we choose a partition P such that $\Delta \alpha_{i}=\frac{\alpha(b)-\alpha(a)}{n}$. This is possible since α is continuous.
Case(i): f is monotonic increasing. $\therefore M_{i}=f\left(x_{i}\right) ; m_{i}=f\left(x_{i-1}\right) \forall i=$
$1,2, \ldots, n$. Now,

$$
\begin{aligned}
U(P, f & , \alpha)-L(P, f, \alpha) \\
= & \sum_{i=1}^{n} M_{i} \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i} \Delta \alpha_{i} \\
= & \sum_{i=1}^{n}\left(M_{i} \Delta \alpha_{i}-m_{i} \Delta \alpha_{i}\right) \\
= & \sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta \alpha_{i} \\
= & \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)\left(\frac{\alpha(b)-\alpha(a)}{n}\right) \\
= & \frac{\alpha(b)-\alpha(a)}{n} \sum_{i=1}^{n}\left[f\left(x_{i}\right)-f\left(x_{i-1}\right)\right] \\
= & \frac{\alpha(b)-\alpha(a)}{n}\left\{\left(f\left(x_{1}\right)-f\left(x_{0}\right)\right)+\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)+\ldots\right. \\
& \left.+\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right)\right\} \\
= & \frac{\alpha(b)-\alpha(a)}{n}\left[f\left(x_{n}\right)-f\left(x_{0}\right)\right] \\
= & \frac{\alpha(b)-\alpha(a)}{n}(f(b)-f(a)) \\
< & \epsilon \text { as } n \rightarrow \infty \\
\therefore f \in & \mathcal{R}(\alpha)
\end{aligned}
$$

Case(ii): f is monotonic decreasing. $\therefore M_{i}=f\left(x_{i}\right) ; m_{i}=f\left(x_{i-1}\right) \forall i=$ $1,2, \ldots, n$. Now,

$$
\begin{aligned}
& U(P, f, \alpha)-L(P, f, \alpha) \\
& \quad=\sum_{i=1}^{n}\left(M_{i} \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i}\right) \Delta \alpha_{i} \\
& \quad=\sum_{i=1}^{n}\left(M_{i} \Delta \alpha_{i}-m_{i} \Delta \alpha_{i}\right) \\
& \quad=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta \alpha_{i} \\
& \quad=\sum_{i=1}^{n}\left(f\left(x_{i-1}\right)-f\left(x_{i}\right)\right)\left(\frac{\alpha(b)-\alpha(a)}{n}\right) \\
& \quad=\frac{\alpha(b)-\alpha(a)}{n} \sum_{i=1}^{n}\left[f\left(x_{i-1}\right)-f\left(x_{i}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{\alpha(b)-\alpha(a)}{n}\left\{\left(f\left(x_{0}\right)-f\left(x_{1}\right)\right)+\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)+\ldots\right. \\
& \left.+\left(f\left(x_{n-1}\right)-f\left(x_{n}\right)\right)\right\} \\
= & \frac{\alpha(b)-\alpha(a)}{n}\left[f\left(x_{0}\right)-f\left(x_{n}\right)\right] \\
= & \frac{\alpha(b)-\alpha(a)}{n}(f(a)-f(b)) \\
< & \epsilon \text { as } n \rightarrow \infty .
\end{aligned}
$$

$$
\therefore f \in \mathcal{R}(\alpha) .
$$

Hence the proof.

Theorem 4.13 Suppose f is bounded on $[a, b], f$ has only finitely many point of discontinuity on $[a, b]$ and α is continuous at every point at which f is discontinuous, then $f \in \mathcal{R}(\alpha)$.
Proof: Let $\epsilon>0$ be given. Put $M=\sup |f(x)|$. Let E be the set of points at which f is discontinuous. Since E is finite and α is continuous at every point of E, we can cover E by finitely many disjoint $\left[u_{j}, v_{j}\right] \subset[a, b]$ such that the sum of the corresponding differences

$$
\sum_{j}\left[\alpha\left(v_{j}\right)-\alpha\left(u_{j}\right)\right]<\epsilon .
$$

Also we place these intervals in such a way that every point of $E \cap(a, b)$ lies in the interval of some $\left[u_{j}, v_{j}\right]$. Remove the segments $\left(u_{j}, v_{j}\right)$ from $[a, b]$. The remaining set K is compact. hence f is uniformly continuous on $K . \therefore$ there exists $\delta>0$ such that $|s-t|<\delta \Rightarrow|f(s)-f(t)|<\epsilon \forall s, t \in K$. We form a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ as follows. Each u_{j} occurs in P, each v_{j} occurs in P. No point of any segment $\left(u_{j}, v_{j}\right)$ occurs in P. If x_{i-1} is not one of the u_{j} 's then $\Delta x_{i}<\delta$. we observe that $M_{i}-m_{i} \leq 2 \mu, \forall i$ and $M_{i}-m_{i} \leq \epsilon$ unless x_{i-1} is one of the u_{j} 's. $\therefore U(P, f, \alpha)-L(P, f, \alpha) \leq$ $[\alpha(b)-\alpha(a)] \epsilon+2 M \epsilon$. (By Theorem 4.11) Since ϵ is arbitrary, Theorem 4.9 guarantees that $f \in \mathcal{R}(\alpha)$.

Theorem 4.14 Suppose $f \in \mathcal{R}(\alpha)$ on $[a, b], m \leq f \leq M, \phi$ is continuous on $[m, M]$ and $h(x)=\phi(f(x))$ on $[a, b]$, then $h \in \mathcal{R}(\alpha)$ on $[a, b]$.
Proof: Let $\epsilon>0$ be given. Since $\phi:[m, M] \rightarrow R$ is continuous and $[m, M]$ is compact, ϕ is uniformly continuous. \therefore There exists $\delta>0$ such that $\delta<\epsilon,|s-t|<\delta \Rightarrow|\phi(s)-\phi(t)|<\epsilon$ for $s, t \in[m, M]$.
Since $f \in \mathcal{R}(\alpha)$, there exists a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ such that $U(P, f, \alpha)-L(P, f, \alpha)<\delta^{2}$...... (2)
To Prove: $h \in \mathcal{R}(\alpha)$. Let $M_{i}^{*}=\sup h(x), x_{i-1} \leq x \leq x_{i}$ and $m_{i}^{*}=$ $\inf h(x), x_{i-1} \leq x \leq x_{i}$. Let $A=\left\{i \mid 1 \leq i \leq n, M_{i}-m_{i}<\delta\right\} ; B=$
$\left\{i \mid 1 \leq i \leq n, M_{i}-m_{i} \geq \delta\right\}$

$$
\begin{aligned}
\text { for } i & \in A,\left|M_{i}-m_{i}\right|<\delta \Rightarrow\left|\phi\left(M_{i}\right)-\phi\left(m_{i}\right)\right|<\epsilon(\text { by }(1)) \\
& \Rightarrow\left|M_{i}^{*}-m_{i}^{*}\right|<\epsilon \ldots . .(3)
\end{aligned}
$$

For $i \in B,\left|M_{i}^{*}-m_{i}^{*}\right| \leq\left|M_{i}^{*}\right|+\left|m_{i}^{*}\right|$
$\leq k+k$ where $k=\sup |\phi(t)|, t \in[m, M]$

$$
\begin{equation*}
\left|M_{i}^{*}-m_{i}^{*}\right| \leq 2 k . \tag{4}
\end{equation*}
$$

Also $\delta \sum_{i \in B} \Delta \alpha_{i} \leq \sum_{i \in B}\left(M_{i}-m_{i}\right) \Delta \alpha_{i}$

$$
\leq \sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta \alpha_{i}
$$

$$
=\sum_{i=1}^{n} M_{i} \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i} \Delta \alpha_{i}
$$

$$
=U(P, f, \alpha)-L(P, f, \alpha)
$$

$$
<\delta^{2}(\text { by }(2))
$$

$$
\begin{align*}
\text { (i.e.) } & \delta \sum_{i \in B} \Delta \alpha_{i}<\delta^{2} \\
\Rightarrow & \sum_{i \in B} \Delta \alpha_{i}<\delta \ldots \tag{5}
\end{align*}
$$

$$
\text { Now } \begin{aligned}
U(P, h, \alpha)-L(P, h, \alpha) & =\sum_{i=1}^{n} M_{i}^{*} \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i}^{*} \Delta \alpha_{i} \\
& =\sum_{i=1}^{n}\left(M_{i}^{*}-m_{i}^{*}\right) \Delta \alpha_{i} \\
& =\sum_{i \in A}\left(M_{i}^{*}-m_{i}^{*}\right) \Delta \alpha_{i}+\sum_{i \in B}\left(M_{i}^{*}-m_{i}^{*}\right) \Delta \alpha_{i} \\
& <\epsilon \sum_{i \in A} \Delta \alpha_{i}+2 k \sum_{i \in B} \Delta \alpha_{i}(\text { by }(3) \text { and }(4)) \\
& <\epsilon \sum_{i=1}^{n} \Delta \alpha_{i}+2 k \sum_{i \in B} \Delta \alpha_{i} \\
& <\epsilon[\alpha(b)-\alpha(a)]+2 k \delta \\
& <\epsilon[\alpha(b)-\alpha(a)]+2 k \epsilon(\because \delta<\epsilon) \\
& =\epsilon[\alpha(b)-\alpha(a)+2 k]
\end{aligned}
$$

(i.e.) $U(P, h, \alpha)-L(P, h, \alpha)<\epsilon[\alpha(b)-\alpha(a)+2 k]$
since ϵ is arbitrary, Theorem 4.9, implies that $h \in \mathcal{R}(\alpha)$.

Lemma 4.15 If $f \in \mathcal{R}(\alpha)$ and $f \geq 0$ on $[a, b]$ then $\int_{a}^{b} f d \alpha \geq 0$.

Proof: Since $f \geq 0, M_{i} \geq 0 \forall_{i}$.

$$
\begin{aligned}
\therefore \sum_{i=1}^{n} M_{i} \Delta \alpha_{i} & \geq 0 \\
\Rightarrow U(P, h, \alpha) & \geq 0 \\
\Rightarrow \inf U(P, h, \alpha) & \geq 0 \\
\Rightarrow \int_{a}^{b} f d \alpha & \geq 0 .
\end{aligned}
$$

Properties of Integral

Theorem 4.16 (a) If $f_{1}, f_{2} \in \mathcal{R}(\alpha)$ on $[a, b]$ then $f_{1}+f_{2} \in \mathcal{R}(\alpha), c f_{1} \in$ $\mathcal{R}(\alpha)$ for every constant c and $\int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha=\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha, \int_{a}^{b} c f_{1} d \alpha=$ $c \int_{a}^{b} f_{1} d \alpha$.
(b) If $f_{1}(x) \leq f_{2}(x)$ on $[a, b]$ then $\int_{a}^{b} f_{1} d \alpha \leq \int_{a}^{b} f_{2} d \alpha$.
(c) If $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and $a<c<b$, then $f \in \mathcal{R}(\alpha)$ on $[a, c]$ and on $[a, b]$ and $\int_{a}^{b} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha$
(d) If $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and if $|f(x)| \leq M$ then $\left|\int_{a}^{b} f d \alpha\right| \leq[\alpha(b)-\alpha(a)]$.
(e) If $f \in R\left(\alpha_{1}\right)$ and $f \in R\left(\alpha_{2}\right)$ then $f \in R\left(\alpha_{1}+\alpha_{2}\right)$ and $\int_{a}^{b} f d\left(\alpha_{1}+\alpha_{2}\right)=$ $\int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2}$. If $f \in \mathcal{R}(\alpha)$ and c is positive constant then $f \in \mathcal{R}(\alpha)$ and $\int_{a}^{b} f d \alpha=c \int_{a}^{b} f d \alpha$.
Proof: (a) Let $\epsilon>0$ be given. Since $f_{1} \in \mathcal{R}(\alpha)$ and $f_{2} \in[a, b]$, there exists two partitions P_{1} and P_{2} of $[a, b]$ such that $U\left(P_{1}, f_{1}, \alpha\right)-L\left(P_{1}, f_{1}, \alpha\right)<\epsilon \ldots$.
(1) and $U\left(P_{2}, f_{2}, \alpha\right)-L\left(P_{2}, f_{2}, \alpha\right)<\epsilon \ldots$. (2)

Let $P=P_{1} \cup P_{2}$ be the common refinement of $[a, b]$.

$$
\begin{align*}
\therefore U\left(P_{1}, f_{1}, \alpha\right) & \leq U\left(P_{1}, f_{1}, \alpha\right) \\
L\left(P_{1}, f_{1}, \alpha\right) & \leq L\left(P_{1}, f_{1}, \alpha\right) \\
\Rightarrow U\left(P, f_{1}, \alpha\right)+L\left(P_{1}, f_{1}, \alpha\right) & \leq U\left(P_{1}, f_{1}, \alpha\right)+L\left(P, f_{1}, \alpha\right) \\
\Rightarrow U\left(P, f_{1}, \alpha\right)-L\left(P_{1}, f_{1}, \alpha\right) & \leq U\left(P_{1}, f_{1}, \alpha\right)-L\left(P_{1}, f_{1}, \alpha\right) \\
U\left(P, f_{1}, \alpha\right)-L\left(P, f_{1}, \alpha\right) & <\epsilon(\text { by }(1)) \ldots \ldots .(3) \tag{3}\\
\text { Similarly } U\left(P, f_{2}, \alpha\right)-L\left(P, f_{2}, \alpha\right) & <\epsilon(\text { by }(2)) \ldots \ldots .(4) \tag{4}
\end{align*}
$$

$(3)+(4) \Rightarrow$

$$
\begin{aligned}
U\left(P, f_{1}, \alpha\right)+U\left(P, f_{2}, \alpha\right) & -\left(L\left(P, f_{1}, \alpha\right)\right)+L\left(P, f_{2}, \alpha\right) \\
& <2 \epsilon \ldots \ldots(5)
\end{aligned}
$$

Now $L\left(P, f_{1}, \alpha\right)+L\left(P, f_{2}, \alpha\right) \leq L\left(P, f_{1}+f_{2}, \alpha\right)$

$$
\leq U\left(P, f_{1}+f_{2}, \alpha\right)
$$

$$
\begin{equation*}
\leq U\left(P, f_{1}, \alpha\right)+U\left(P, f_{2}, \alpha\right) \tag{6}
\end{equation*}
$$

(5), $(6) \Rightarrow U\left(P, f_{1}+f_{2}, \alpha\right)-L\left(P, f_{1}+f_{2}, \alpha\right)<2 \epsilon . \therefore f_{1}+f_{2} \in \mathcal{R}(\alpha)$ on $[a, b]$. To prove:

$$
\int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha=\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha
$$

Since $f_{1}, f_{2} \in \mathcal{R}(\alpha)$, there exists partition P_{1} and P_{2} of $[a, b]$

$$
\begin{align*}
& U\left(P_{1}, f_{1}, \alpha\right)<\int_{a}^{b} f_{1} d \alpha+\epsilon(\text { by Theorem 4.9 }) . \\
& U\left(P_{2}, f_{2}, \alpha\right)<\int_{a}^{b} f_{2} d \alpha+\epsilon \ldots \ldots(2 *) \tag{1*}
\end{align*}
$$

$(1)+(2) \Rightarrow$

$$
\begin{equation*}
U\left(P_{1}, f_{1}, \alpha\right)+U\left(P_{2}, f_{2}, \alpha\right)<\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha+2 \epsilon . \tag{3*}
\end{equation*}
$$

Let $P=P_{1} \cup P_{2}$

$$
\begin{align*}
& U\left(P, f_{1}, \alpha\right) \leq U\left(P_{1}, f_{1}, \alpha\right) \tag{4*}\\
& U\left(P, f_{2}, \alpha\right) \leq U\left(P_{2}, f_{2}, \alpha\right)
\end{align*}
$$

$\left(4^{*}\right)+\left(5^{*}\right) \Rightarrow$

$$
\begin{aligned}
U\left(P, f_{1}, \alpha\right)+U\left(P, f_{2}, \alpha\right) & \leq U\left(P_{1}, f_{1}, \alpha\right)+\leq U\left(P_{2}, f_{2}, \alpha\right) \\
& <\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha+2 \epsilon \ldots \ldots(6 *)\left(\text { by }\left(3^{*}\right)\right) \\
U\left(P, f_{1}+f_{2}, \alpha\right) & \leq U\left(P, f_{1}, \alpha\right)+U\left(P, f_{2}, \alpha\right) \\
& <\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha+2 \epsilon\left(\text { by }\left(6^{*}\right)\right)
\end{aligned}
$$

Taking infimum over all partition P,

$$
\int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha<\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha+2 \epsilon
$$

Since ϵ is arbitrary,

$$
\begin{equation*}
\int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha \leq \int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha \ldots \ldots \tag{7*}
\end{equation*}
$$

Replacing f_{1} and f_{2} in $\left(7^{*}\right)$ by $-f_{1}$ and $-f_{2}$ respectively we get,

$$
\begin{align*}
& \int_{a}^{b}\left(-f_{1}-f_{2}\right) d \alpha \leq \int_{a}^{b}\left(-f_{1}\right) d \alpha+\int_{a}^{b}\left(-f_{2}\right) d \alpha \\
\Rightarrow & \int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha \geq \int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha \ldots .(8 *) \tag{8*}
\end{align*}
$$

From $\left(7^{*}\right) \operatorname{and}\left(8^{*}\right)$ we get,

$$
\int_{a}^{b}\left(f_{1}+f_{2}\right) d \alpha=\int_{a}^{b} f_{1} d \alpha+\int_{a}^{b} f_{2} d \alpha
$$

To Prove: $c f_{1} \in \mathcal{R}(\alpha)$ where c is a constant.
For any partition P, of $[a, b]$

$$
U\left(P, c f_{1}, \alpha\right)= \begin{cases}c U\left(P, f_{1}, \alpha\right) & c \geq 0 \\ c L\left(P, f_{1}, \alpha\right) & c \leq 0\end{cases}
$$

and

$$
\begin{aligned}
& L\left(P, c f_{1}, \alpha\right)= \begin{cases}c L\left(P, f_{1}, \alpha\right) & c \geq 0 \\
c U\left(P, f_{1}, \alpha\right) & c \leq 0\end{cases} \\
& U\left(P, c f_{1}, \alpha\right)-L\left(P, c f_{1}, \alpha\right)= \begin{cases}c\left(U\left(P, f_{1}, \alpha\right)-L\left(P, f_{1}, \alpha\right)\right) & c \geq 0 \\
-c\left(U\left(P, f_{1}, \alpha\right)-L\left(P, f_{1}, \alpha\right)\right) & c \leq 0\end{cases} \\
& U\left(P, c f_{1}, \alpha\right)-L\left(P, c f_{1}, \alpha\right)=|c|\left(U\left(P, f_{1}, \alpha\right)-L\left(P, f_{1}, \alpha\right)\right) \ldots .(1 A)
\end{aligned}
$$

Since $f_{1} \in \mathcal{R}(\alpha)$ there exists a partition P of $[a, b]$ such that

$$
\begin{equation*}
U\left(P, f_{1}, \alpha\right)-L\left(P, c f_{1}, \alpha\right)<\frac{\epsilon}{|c|} \ldots \ldots \tag{2A}
\end{equation*}
$$

Sub (2A) in (1A), we get

$$
\begin{aligned}
U\left(P, c f_{1}, \alpha\right)-L\left(P, c f_{1}, \alpha\right) & <|c| \frac{\epsilon}{|c|} \\
U\left(P, c f_{1}, \alpha\right)-L\left(P, c f_{1}, \alpha\right) & <\epsilon \\
\therefore c f_{1} & \in \mathcal{R}(\alpha) .
\end{aligned}
$$

To Prove:

$$
\begin{aligned}
\int_{a}^{b} c f_{1} d \alpha & =\int_{a}^{b} c f_{1} d \alpha \\
\text { If } c \geq 0, \text { then } U\left(P, c f_{1}, \alpha\right) & =c U\left(P, f_{1}, \alpha\right) \\
\Rightarrow \inf U\left(P, c f_{1}, \alpha\right) & =\inf \left(c U\left(P, f_{1}, \alpha\right)\right) \\
\Rightarrow \inf U\left(P, c f_{1}, \alpha\right) & =c \inf U\left(P, c f_{1}, \alpha\right) \\
\Rightarrow \int_{a}^{b} c f_{1} d \alpha & =\int_{a}^{b} c f_{1} d \alpha \\
\text { If } c \leq 0, \text { then } L\left(P, c f_{1}, \alpha\right) & =c U\left(P, f_{1}, \alpha\right) \\
& =-|c| U\left(P, f_{1}, \alpha\right)(\because c \leq 0) \\
\Rightarrow \sup L\left(P, c f_{1}, \alpha\right) & =\sup \left(-|c| U\left(P, f_{1}, \alpha\right)\right) \\
& =|c| \sup \left(-U\left(P, f_{1}, \alpha\right)\right) \\
& =-|c| \inf \left(U\left(P, f_{1}, \alpha\right)\right) \\
\Rightarrow \int_{a}^{b} c f_{1} d \alpha & =-|c| \int_{a}^{b} f_{1} d \alpha \\
& =c \int_{a}^{b} f_{1} d \alpha \\
\text { When } c=0, \int_{a}^{b} c f_{1} d \alpha & =\int_{a}^{b} f_{1} d \alpha(=0)
\end{aligned}
$$

To Prove:

$$
f_{1} \leq f_{2} \Rightarrow \int_{a}^{b} f_{1} d \alpha \leq \int_{a}^{b} f_{2} d \alpha
$$

Proof of b: Given $f_{1} \leq f_{2} \Rightarrow f_{2}-f_{1} \geq 0$

$$
\begin{aligned}
\Rightarrow \int_{a}^{b}\left(f_{2}-f_{1}\right) d \alpha & \geq 0 \\
\Rightarrow \int_{a}^{b} f_{2}+\int_{a}^{b}\left(-f_{1}\right) d \alpha & \geq 0 \\
\Rightarrow \int_{a}^{b} f_{2} d \alpha+\int_{a}^{b}\left(-f_{1}\right) d \alpha & \geq 0(\text { by }(\mathrm{a})) \\
\Rightarrow \int_{a}^{b} f_{2} d \alpha-\int_{a}^{b} f_{1} d \alpha & \geq 0 \\
\Rightarrow \int_{a}^{b} f_{1} d \alpha & \leq \int_{a}^{b} f_{2} d \alpha
\end{aligned}
$$

Proof of (c): Given $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and $a<c<b$ for $\epsilon<0$, there exists a partition P of $[a, b]$ such that

$$
U(P, f, \alpha)-L(P, f, \alpha)<\epsilon \ldots \ldots(1 B)
$$

Let $P^{*}=P \cup\{c\}$. Now P^{*} is a refinement of P and induces two partitions P_{1} and P_{2} of $[a, c]$ and $[c, b]$ respectively. Now,

$$
\begin{aligned}
U(P, f, \alpha) & \geq U\left(P^{*}, f, \alpha\right) \\
& =U\left(P_{1}, f, \alpha\right)+U\left(P_{2}, f, \alpha\right) \ldots .(2 B) \\
\Rightarrow U\left(P_{1}, f, \alpha\right) & \leq U(P, f, \alpha) \ldots \ldots(3 B) \\
\text { and } U\left(P_{2}, f, \alpha\right) & \leq U(P, f, \alpha) \ldots \ldots(4 B) \\
L(P, f, \alpha) & \leq L\left(P^{*}, f, \alpha\right) \\
& =L\left(P_{1}, f, \alpha\right)+L\left(P_{2}, f, \alpha\right) \ldots \ldots(5 B) \\
-L(P, f, \alpha) & \geq-L\left(P_{1}, f, \alpha\right)-L\left(P_{2}, f, \alpha\right) \\
-L\left(P_{1}, f, \alpha\right) & \leq-L(P, f, \alpha) \ldots \ldots(6 B) \\
\text { and }-L\left(P_{2}, f, \alpha\right) & \leq-L(P, f, \alpha) \ldots \ldots(7 B) \\
(3 B)+(6 B) \Rightarrow U\left(P_{1}, f, \alpha\right)-L\left(P_{1}, f, \alpha\right) & \leq U(P, f, \alpha)-L(P, f, \alpha)(\text { by }(1 \mathrm{~B})) \\
& <\epsilon \\
\therefore f & \in \mathcal{R}(\alpha) \text { on }[a, c] . \\
(4 B)+(7 B) \Rightarrow U\left(P_{2}, f, \alpha\right)-L\left(P_{2}, f, \alpha\right) & \leq U(P, f, \alpha)-L(P, f, \alpha)(\text { by }(1 \mathrm{~B})) \\
& <\epsilon \\
\therefore f & \in \mathcal{R}(\alpha) \text { on }[c, b] .
\end{aligned}
$$

To Prove:

$$
\int_{a}^{b} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha
$$

$$
\begin{aligned}
(2 B) \Rightarrow U(P, f, \alpha) & \geq U\left(P_{1}, f, \alpha\right)+U\left(P_{2}, f, \alpha\right) \\
& \geq \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha \\
\Rightarrow \inf U(P, f, \alpha) & \geq \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha \\
\int_{a}^{b} f d \alpha & \geq \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha \ldots \ldots(8 B) \\
(5 B) \Rightarrow L(P, f, \alpha) & \leq L\left(P_{1}, f, \alpha\right)+L\left(P_{2}, f, \alpha\right) \\
& \leq \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha \\
\Rightarrow \sup U(P, f, \alpha) & \leq \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha \\
\int_{a}^{b} f d \alpha & \leq \int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha \ldots \ldots .(9 B)
\end{aligned}
$$

$\therefore(8 B)$ and $(9 B)$, we get

$$
\int_{a}^{b} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha
$$

Proof of (d): Given $f \in \mathcal{R}(\alpha)$ and $|f(x)| \leq M$
To Prove: $\left|\int_{a}^{b} f d \alpha\right| \leq[\alpha(b)-\alpha(a)]$
we have, for any partition P of $[a, b]$,

$$
\begin{aligned}
\int_{a}^{b} f d \alpha & \leq U(P, f, \alpha) \\
\left|\int_{a}^{b} f d \alpha\right| & \leq|U(P, f, \alpha)| \\
& =\left|\sum_{i=1}^{n} M_{i} \Delta \alpha_{i}\right| \\
& <\sum_{i=1}^{n}\left|M_{i} \Delta \alpha_{i}\right| \\
& =\sum_{i=1}^{n}\left|M_{i}\right| \Delta \alpha_{i}\left(\because \Delta \alpha_{i} \geq 0\right) \\
& \leq \sum_{i=1}^{n} M \Delta \alpha_{i}(\because|f(x)| \leq M) \\
& =M \sum_{i=1}^{n} \Delta \alpha_{i} \\
\left|\int_{a}^{b} f d \alpha\right| & \leq M[\alpha(b)-\alpha(a)]
\end{aligned}
$$

Proof of (e): Given $f \in \mathcal{R}\left(\alpha_{1}\right)$ and $f \in \mathcal{R}\left(\alpha_{2}\right)$. To Prove: $f \in \mathcal{R}\left(\alpha_{1}+\alpha_{2}\right)$.

Let $\alpha=\alpha_{1}+\alpha_{2}$. For any partition p of $[a, b]$,

$$
\begin{align*}
U(P, f, \alpha) & =\sum_{i=1}^{n} M_{i} \Delta \alpha_{i} \\
& =\sum_{i=1}^{n} M_{i}\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right) \\
& =\sum_{i=1}^{n} M_{i}\left[\left(\alpha_{1}+\alpha_{2}\right)\left(x_{i}\right)-\left(\alpha_{1}+\alpha_{2}\right)\left(x_{i-1}\right)\right] \\
& =\sum_{i=1}^{n} M_{i}\left[\alpha_{1}\left(x_{i}\right)+\alpha_{2}\left(x_{i}\right)\right]-\left[\alpha_{1}\left(x_{i-1}\right)+\alpha_{2}\left(x_{i-1}\right)\right] \\
& =\sum_{i=1}^{n} M_{i}\left[\alpha_{1}\left(x_{i}\right)-\alpha_{1}\left(x_{i-1}\right)\right]+\sum_{i=1}^{n} M_{i}\left[\alpha_{2}\left(x_{i}\right)-\alpha_{2}\left(x_{i-1}\right)\right] \\
U(P, f, \alpha) & =U\left(P, f, \alpha_{1}\right)+U\left(P, f, \alpha_{2}\right) \ldots \ldots .(1 C) \tag{1C}\\
\text { Similarly } L(P, f, \alpha) & =L\left(P, f, \alpha_{1}\right)+L\left(P, f, \alpha_{2}\right) \ldots \ldots .(2 C) \tag{2C}
\end{align*}
$$

since $f \in \mathcal{R}\left(\alpha_{1}\right)$ and $f \in \mathcal{R}\left(\alpha_{2}\right)$, there exists partitions P_{1} and P_{2} of $[a, b]$ such that

$$
\begin{array}{r}
U\left(P_{1}, f, \alpha_{1}\right)-L\left(P_{1}, f, \alpha_{1}\right)<\epsilon \\
\text { and } U\left(P_{2}, f, \alpha_{2}\right)-L\left(P_{2}, f, \alpha_{2}\right)<\epsilon
\end{array}
$$

Let P^{*} be the common refinement of P_{1} and P_{2} of $[a, b] . P^{*}=P_{1} \cup P_{2}$

$$
\begin{align*}
& U\left(P^{*}, f, \alpha_{1}\right)-L\left(P^{*}, f, \alpha_{1}\right)<\epsilon \ldots \ldots .(3 C) \\
& U\left(P^{*}, f, \alpha_{2}\right)-L\left(P^{*}, f, \alpha_{2}\right)<\epsilon \ldots \ldots(4 C) \tag{4C}
\end{align*}
$$

Now,

$$
\begin{aligned}
U\left(P^{*}, f, \alpha\right)-L\left(P^{*}, f, \alpha\right)= & U\left(P^{*}, f, \alpha_{1}\right)+U\left(P^{*}, f, \alpha_{2}\right) \\
& -\left[L\left(P^{*}, f, \alpha_{1}\right)+L\left(P^{*}, f, \alpha_{2}\right)\right](\text { by }(1 \mathrm{C}) \text { and }(2 \mathrm{C})) \\
= & {\left[U\left(P^{*}, f, \alpha_{1}\right)-L\left(P^{*}, f, \alpha_{1}\right)\right] } \\
& +\left[U\left(P^{*}, f, \alpha_{2}\right)-L\left(P^{*}, f, \alpha_{2}\right)\right] \\
< & \epsilon+\epsilon(\text { by }(3 \mathrm{C}) \text { and }(4 \mathrm{C})) \\
U\left(P^{*}, f, \alpha\right)-L\left(P^{*}, f, \alpha\right)< & 2 \epsilon
\end{aligned}
$$

Since ϵ arbitrary, we get $f \in \mathcal{R}(\alpha)$ (i.e.) $f \in \mathcal{R}\left(\alpha_{1}+\alpha_{2}\right)$.
To Prove:

$$
\int_{a}^{b} d\left(\alpha_{1}+\alpha_{2}\right)=\int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2}
$$

$$
\begin{align*}
(1 C) \Rightarrow U(P, f, \alpha) & =U\left(P, f, \alpha_{1}\right)+U\left(P, f, \alpha_{2}\right) \\
& \geq \int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} \\
\Rightarrow \inf U(P, f, \alpha) & \geq \int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} \\
\int_{a}^{b} f d \alpha & \geq \int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} \ldots \ldots(5 C) \tag{5C}\\
(2 C) \Rightarrow L(P, f, \alpha) & =L\left(P, f, \alpha_{1}\right)+L\left(P, f, \alpha_{2}\right) \\
& \leq \int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} \\
\sup U(P, f, \alpha) & \leq \int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} \\
\int_{a}^{b} f d \alpha & \leq \int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} \ldots \ldots(6 C)
\end{align*}
$$

from (5C) and (6C) we get,

$$
\begin{aligned}
\int_{a}^{b} f d \alpha & =\int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} \\
(\text { i.e. }) \int_{a}^{b} d\left(\alpha_{1}+\alpha_{2}\right) & =\int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2} .
\end{aligned}
$$

To Prove: Given $f \in \mathcal{R}(\alpha)$ and $c>0$
To Prove: $f \in \mathcal{R}(\alpha)$, for any partition P,

$$
\begin{align*}
U(P, f, c \alpha) & =\sum_{i=1}^{n} M_{i} \Delta\left(c \alpha_{i}\right) \\
& =\sum_{i=1}^{n} M_{i}\left(c \alpha\left(x_{i}\right)-c \alpha\left(x_{i-1}\right)\right) \\
& =\sum_{i=1}^{n} M_{i} c\left[\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right] \\
& =\sum_{i=1}^{n} c M_{i} \Delta \alpha_{i} \\
& =c U(P, f, \alpha) \ldots \ldots .(7 C) \tag{7C}\\
\text { Similarly } L(P, f, c \alpha) & =c L(P, f, \alpha) \\
U(P, f, c \alpha)-L(P, f, c \alpha) & =c U(P, f, \alpha)-c L(P, f, \alpha) \\
& =c[U(P, f, \alpha)-L(P, f, \alpha)] \ldots \tag{8C}
\end{align*}
$$

Since $f \in \mathcal{R}(\alpha)$, given $\epsilon>0$, there exists partition P of $[a, b]$ such that

$$
\begin{equation*}
U(P, f, \alpha)-L(P, f, \alpha)<\frac{\epsilon}{c} \ldots . . \tag{9C}
\end{equation*}
$$

sub (9C)in (8C) we get

$$
U(P, f, c \alpha)-L(P, f, c \alpha)<c \cdot \frac{\epsilon}{c}=\epsilon
$$

$\therefore f \in \mathcal{R}(c \alpha)$. To Prove:

$$
\begin{aligned}
\int_{a}^{b} f d(c \alpha) & =c \int_{a}^{b} f d \alpha \\
(7 C) \Rightarrow U(P, f, c \alpha) & =c U(P, f, \alpha) \\
\Rightarrow \inf U(P, f, c \alpha) & =\inf c U(P, f, \alpha) \\
& =c \inf U(P, f, \alpha) \\
\Rightarrow \int_{a}^{b} f d(c \alpha) & =c \int_{a}^{b} f d \alpha
\end{aligned}
$$

Theorem 4.17 If $f, g \in \mathcal{R}(\alpha)$ on $[a, b]$, then
(a) $f \cdot g \in \mathcal{R}(\alpha)$
(b) $|f| \in \mathcal{R}(\alpha)$ and

$$
\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha
$$

Proof: (a) Let $\phi(t)=t^{2}$, clearly ϕ is continuous

$$
\begin{aligned}
h(x) & =\phi(f(x))(\text { by Theorem 4.14) } \\
& =f(x)^{2} \\
& =f^{2}(x) \\
\therefore f^{2} & \in \mathcal{R}(\alpha) \ldots \ldots .(1)(\because f \in \mathcal{R}(\alpha)) \\
\text { Now, } f, g & \in \mathcal{R}(\alpha) \\
\Rightarrow f+g, f-g & \in \mathcal{R}(\alpha)(\text { by Theorem 4.16) } \\
\Rightarrow(f+g)^{2},(f-g)^{2} & \in \mathcal{R}(\alpha) \\
\Rightarrow(f+g)^{2}-(f-g)^{2} & \in \mathcal{R}(\alpha) \\
\Rightarrow 4 f g & \in \mathcal{R}(\alpha) \\
\Rightarrow f g & \in \mathcal{R}(\alpha) \text { by Theorem 4.16) }
\end{aligned}
$$

(b) $|f| \in \mathcal{R}(\alpha)$ and $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha$.

To Prove: $|f| \in \mathcal{R}(\alpha)$. Let $\phi(t)=|t| ; h(x)=\phi(f(x))=|f(x)| . \quad \therefore$ By
Theorem 4.14, $|f| \in \mathcal{R}(\alpha)$
To prove:

$$
\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha
$$

Choose $c= \pm 1$ so that $c \int_{a}^{b} f d \alpha \geq 0$

$$
\begin{aligned}
\therefore\left|\int_{a}^{b} f d \alpha\right| & =c \int_{a}^{b} f d \alpha \\
& =\int_{a}^{b} c f d \alpha(\text { by Theorem 4.16(a)) } \\
& \leq \int_{a}^{b}|f| d \alpha(\because c f \leq|f|) \text { by Theorem 4.16(b) }
\end{aligned}
$$

Hence the proof.

Definition 4.18 Unit Step Function:

$$
I(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \leq 0 \\
1 & \text { if } & x>0
\end{array}\right.
$$

Theorem 4.19 If $a<s<b, f$ is bounded on $[a, b], f$ is continuous at s and $\alpha(x)=I(x-s)$, then

$$
\int_{a}^{b} f d \alpha=f(s) .
$$

Proof: Consider partitions $P=\left\{x_{0}, x_{1}, x_{2}, x_{b}\right\}$ of $[a, b]$ where $x_{0} x_{1}=s, s<$ $x_{2}<b, x_{2}=b$. Now,

$$
\begin{aligned}
U(P, f, \alpha)= & \sum_{i=1}^{3} M_{i} \Delta \alpha_{i} \\
= & M_{i} \Delta \alpha_{1}+M_{2} \Delta \alpha_{2}+M_{3} \Delta \alpha_{3} \\
= & M_{1}\left[\alpha\left(x_{1}\right)-\alpha\left(x_{0}\right)\right]+M_{2}\left[\alpha\left(x_{2}\right)-\alpha\left(x_{1}\right)\right]+M_{3}\left[\alpha\left(x_{3}\right)-\alpha\left(x_{2}\right)\right] \\
= & M_{1}\left[I\left(x_{1}-s\right)-I\left(x_{0}-s\right)\right]+M_{2}\left[I\left(x_{2}-s\right)-I\left(x_{1}-s\right)\right] \\
& +M_{3}\left[I\left(x_{3}-s\right)-I\left(x_{2}-s\right)\right] \\
= & M_{1}[I(s-s)-I(a-s)]+M_{2}\left[I\left(x_{2}-s\right)-I(s-s)\right] \\
& +M_{3}\left[I(b-s)-I\left(x_{2}-s\right)\right] \\
= & M_{1}[I(0)-I(a-s)]+M_{2}\left[I\left(x_{2}-s\right)-I(0)\right] \\
& +M_{3}\left[I(b-s)-I\left(x_{2}-s\right)\right] \\
= & M_{1}[0-0]+M_{2}[1-0]+M_{3}[1-1](\text { by definition of } i) \\
= & M_{2}
\end{aligned}
$$

In a similar fashion we can get $L(P, f, \alpha)=m_{2}$.

$$
\begin{aligned}
\int_{a}^{b} f d \alpha & =\inf U(P, f, \alpha)=\sup L(P, f, \alpha) \\
& =\inf M_{2}=\sup m_{2} \\
& =f(s)\left(\because x_{2} \rightarrow s, f\left(x_{2}\right) \rightarrow f(x) \text { as } f \text { is continuous at } s\right)
\end{aligned}
$$

Theorem 4.20 Suppose $c_{n} \geq 0$ for $1,2,3 \ldots, \sum c_{n}$ converges, $\left\{s_{n}\right\}$ is a sequence of distinct point in (a, b) and $\alpha(x)=\sum_{n=1}^{\infty} c_{n} I\left(x-s_{n}\right)$. Let f be continuous on $[a, b]$, then

$$
\int_{a}^{b} f d \alpha=\sum_{n=1}^{\infty} c_{n} f\left(s_{n}\right)
$$

Proof: We have $\left|I\left(x-s_{n}\right)\right| \leq 1 . \therefore\left|c_{n} I\left(x-s_{n}\right)\right| \leq c_{n}$. Since

$$
\sum_{n=1}^{\infty} c_{n}
$$

is convergent, by comparison test,

$$
\sum_{n=1}^{\infty} c_{n} I\left(x-s_{n}\right)
$$

also converges. Now,

$$
\begin{aligned}
\alpha(a) & =\sum_{n=1}^{\infty} c_{n} I\left(a-s_{n}\right) \\
& =0 \ldots \ldots .(1)\left(\because I\left(a-s_{n}\right)=0\right) \\
\text { and } \alpha(b) & =\sum_{n=1}^{\infty} c_{n} I\left(b-s_{n}\right) \\
& =\sum_{n=1}^{\infty} c_{n} \ldots . .(2)\left(\because I\left(b-s_{n}\right)=0\right)
\end{aligned}
$$

Claim: α is monotonically increasing. Let $x<y$ and let $x<s_{k}<y$

$$
\begin{aligned}
\alpha(x) & =\sum_{n=1}^{\infty} c_{n} I\left(x-s_{n}\right) \\
& =c_{1}+c_{2}+\ldots+c_{k-1} \\
\alpha(y) & =\sum_{n=1}^{\infty} c_{n} I\left(y-s_{n}\right) \\
& =c_{1}+c_{2}+\ldots+c_{k-1}+c_{k} \\
\therefore \alpha(x) & \leq \alpha(y)
\end{aligned}
$$

Hence the claim. Since

$$
\sum_{n=1}^{\infty} c_{n}
$$

is convergent, given $\epsilon>0$, there exists $N>$ such that

$$
\begin{equation*}
\sum_{n=N+1}^{\infty} c_{n}<\epsilon . \tag{3}
\end{equation*}
$$

Let

$$
\begin{aligned}
& \alpha_{1}(x)=\sum_{n=1}^{N} c_{n} I\left(x-s_{n}\right) \\
& \alpha_{2}(x)=\sum_{n=N+1}^{\infty} c_{n} I\left(x-s_{n}\right)
\end{aligned}
$$

Clearly $\alpha(x)=\alpha_{1}(x)+\alpha_{2}(x)$. Let $\alpha_{1 i}=I\left(x-s_{i}\right), i=1,2, \ldots, N$.

$$
\begin{aligned}
\therefore \alpha_{1}(x) & =\sum_{n=1}^{N} c_{n} \alpha_{1 n}(x) \\
& =\left(c_{1} \alpha_{11}+c_{2} \alpha_{12}+\ldots+c_{N} \alpha_{1 N}\right) x \\
\text { (or) } \alpha_{1} & =c_{1} \alpha_{11}+c_{2} \alpha_{12}+\ldots+c_{N} \alpha_{1 N}
\end{aligned}
$$

Now,

$$
\begin{align*}
\int_{a}^{b} f d \alpha_{1} & =\int_{a}^{b} f d\left(c_{1} \alpha_{11}+c_{2} \alpha_{12}+\ldots+c_{N} \alpha_{1 N}\right) \\
& =c_{1} \int_{a}^{b} f d \alpha_{11}+c_{2} \int_{a}^{b} f d \alpha_{12}+\ldots c_{N} \int_{a}^{b} f d \alpha_{1 N}(\text { by Theorem 4.16(e)) } \\
& =c_{1} f\left(s_{1}\right)+c_{2} f\left(s_{2}\right)+\ldots+c_{N} f\left(s_{N}\right)(\text { by Theorem 4.19) } \\
& =\sum_{n=1}^{N} c_{n} f\left(s_{n}\right) \ldots \ldots(4) \tag{4}
\end{align*}
$$

Now,

$$
\begin{align*}
\alpha_{2}(a) & =\sum_{n=N+1}^{\infty} c_{n} I\left(a-s_{n}\right) \\
& =0 \ldots \ldots .(5) \\
\alpha_{2}(b) & =\sum_{n=N+1}^{\infty} c_{n} I\left(b-s_{n}\right) \\
& =\sum_{n=N+1}^{\infty} c_{n} \\
& <\epsilon(\text { by }(3)) \ldots \ldots(6) \tag{6}
\end{align*}
$$

Let $M=|f(x)|, x \in[a, b]$. By Theorem 4.16(d),

$$
\begin{aligned}
\left|\int_{a}^{b} f d \alpha_{2}\right| & \leq\left[\alpha_{2}(b)-\alpha_{2}(a)\right] \\
& \leq M \epsilon(\text { by }(5) \operatorname{and}(6)), \\
(\text { i.e. })\left|\int_{a}^{b} f d \alpha_{2}\right| & \leq M \epsilon \\
\Rightarrow\left|\int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2}-\int_{a}^{b} f d \alpha_{1}\right| & \leq M \epsilon \\
\Rightarrow\left|\int_{a}^{b} f d\left(\alpha_{1}+\alpha_{2}\right)-\int_{a}^{b} f d \alpha_{1}\right| & \leq M \epsilon(\text { by theorem 4.16(d)) } \\
\Rightarrow\left|\int_{a}^{b} f d \alpha-\sum_{n=1}^{N} c_{n} f\left(s_{n}\right)\right| & \leq M \epsilon(\text { by }(4))
\end{aligned}
$$

Taking limits as $N \rightarrow \infty$,

$$
\begin{aligned}
\left|\int_{a}^{b} f d \alpha-\sum_{n=1}^{\infty} c_{n} f\left(s_{n}\right)\right| & \leq M \epsilon \\
\therefore\left|\int_{a}^{b} f d \alpha \epsilon\right| & =\sum_{n=1}^{\infty} c_{n} f\left(s_{n}\right)
\end{aligned}
$$

Theorem 4.21 Assume α increases monotonically and $\alpha^{\prime} \in \mathcal{R}$ on $[a, b]$, Let f be a bounded real function on $[a, b]$, then $f \in \mathcal{R}(\alpha)$ iff $f \alpha^{\prime} \in \mathcal{R}$. In that case $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
Proof: Let $\epsilon>0$ be given. Since $\alpha^{\prime} \in R$, there exists a partition $P=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of $[a, b]$ such that $U\left(P, \alpha^{\prime}\right)-L\left(P, \alpha^{\prime}\right)<\epsilon \ldots \ldots$. (1)
By mean value theorem , there exists $t: \in\left[x_{i-1}, x_{i}\right]$ such that $\alpha\left(x_{i}\right)-$ $\alpha\left(x_{i-1}\right)=\alpha^{\prime}\left(t_{i}\right)\left(x_{i}-x_{i-1}\right)$ (i.e.) $\Delta \alpha_{i}=\alpha^{\prime}\left(t_{i}\right) \Delta x_{i} \ldots$.
By Theorem $4.10(\mathrm{~b}), \forall s_{i}, t_{i} \in\left[x_{i-1}, x_{i}\right]$

$$
\begin{equation*}
\sum_{i=1}^{n}\left|\alpha^{\prime}\left(s_{i}\right)-\alpha^{\prime}\left(t_{i}\right)\right| \Delta x_{i}<\epsilon . \tag{3}
\end{equation*}
$$

Now,

$$
\begin{align*}
& \left\lvert\, \begin{array}{l}
\left|\sum_{i=1}^{n} f\left(s_{i}\right) \Delta \alpha_{i}-\sum_{i=1}^{n} f\left(s_{i}\right) \alpha^{\prime}\left(s_{i}\right) \Delta x_{i}\right| \\
\quad=\left|\sum_{i=1}^{n} f\left(s_{i}\right) \alpha^{\prime}\left(t_{i}\right) \Delta x_{i}-\sum_{i=1}^{n} f\left(s_{i}\right) \alpha^{\prime}\left(s_{i}\right) \Delta x_{i}\right| \\
\quad=\left|\sum_{i=1}^{n} f\left(s_{i}\right)\left[\alpha^{\prime}\left(t_{i}\right)-\alpha^{\prime}\left(s_{i}\right)\right] \Delta x_{i}\right| \\
\left|\sum_{i=1}^{n} f\left(s_{i}\right) \Delta \alpha_{i}-\sum_{i=1}^{n} f\left(s_{i}\right) \alpha^{\prime}\left(s_{i}\right) \Delta x_{i}\right| \\
\quad \leq \sum_{i=1}^{n}\left|f\left(s_{i}\right)\right|\left|\alpha^{\prime}\left(t_{i}\right)-\alpha^{\prime}\left(s_{i}\right)\right| \Delta x_{i} \\
\quad \leq \sum_{i=1}^{n} M\left|\alpha^{\prime}\left(t_{i}\right)-\alpha^{\prime}\left(s_{i}\right)\right| \Delta x_{i} \text { where } M=\sup |f(x)| \\
\quad=M \sum_{i=1}^{n}\left|\alpha^{\prime}\left(t_{i}\right)-\alpha^{\prime}\left(s_{i}\right)\right| \Delta x_{i} \\
\quad \leq M \epsilon(\operatorname{by}(3)) \\
\text { (i.e.) }\left|\sum_{i=1}^{n} f\left(s_{i}\right) \Delta \alpha_{i}-\sum_{i=1}^{n} f\left(s_{i}\right) \alpha^{\prime}\left(s_{i}\right) \Delta x_{i}\right| \leq M \epsilon \\
\left|\sum_{i=1}^{n} f\left(s_{i}\right) \Delta \alpha_{i}-\sum_{i=1}^{n} f\left(\alpha^{\prime}\right)\left(s_{i}\right) \Delta x_{i}\right| \leq M \epsilon \ldots . .(4)
\end{array}\right.
\end{align*}
$$

Since inequality (4) is true for any s_{i} in $\left[x_{i-1}, x_{i}\right]$, we can replace $\left(f \alpha^{\prime}\right)\left(s_{i}\right)$ by M_{i}^{\prime} and m_{i}^{\prime}, where $m_{i}^{\prime}=\inf \left(f \alpha^{\prime}\right) s_{i}, M_{i}^{\prime}=\sup \left(f \alpha^{\prime}\right)\left(s_{i}\right), s_{i} \in\left[x_{i-1}, x_{i}\right]$

$$
\begin{align*}
\quad\left|\sum_{i=1}^{n} f\left(s_{i}\right) \Delta \alpha_{i}-\sum_{i=1}^{n} M_{i}^{\prime} \Delta x_{i}\right| & \leq M \epsilon \ldots \tag{5}\\
\text { and }\left|\sum_{i=1}^{n} f\left(s_{i}\right) \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i}^{\prime} \Delta x_{i}\right| & \leq M \epsilon \ldots \tag{6}
\end{align*}
$$

Again by replacing $f\left(s_{i}\right)$ by M_{i} in (5) and by m_{i} in (6) we get

$$
\begin{align*}
&\left|\sum_{i=1}^{n} M_{i}^{\prime} \Delta \alpha_{i}-\sum_{i=1}^{n} M_{i}^{\prime} \Delta x_{i}\right| \leq M \epsilon \text { and } \\
&\left|\sum_{i=1}^{n} m_{i}^{\prime} \Delta \alpha_{i}-\sum_{i=1}^{n} m_{i}^{\prime} \Delta x_{i}\right| \leq M \epsilon \\
& \Rightarrow\left|U(P, f, \alpha)-U\left(P, f, \alpha^{\prime}\right)\right| \leq M \epsilon \ldots \ldots .(7 \tag{7}\\
&\left|L(P, f, \alpha)-L\left(P, f, \alpha^{\prime}\right)\right| \leq M \epsilon \ldots . .(\delta \tag{8}
\end{align*}
$$

Since ϵ is arbitrary, (7) and (8)

$$
\begin{aligned}
\Rightarrow U(P, f, \alpha) & =U\left(P, f, \alpha^{\prime}\right) \text { and } \\
L(P, f, \alpha) & =L\left(P, f, \alpha^{\prime}\right) \\
\Rightarrow \inf U(P, f, \alpha) & =\inf U\left(P, f, \alpha^{\prime}\right) \text { and } \\
\sup L(P, f, \alpha) & =\sup L\left(P, f, \alpha^{\prime}\right) \\
\Rightarrow \int_{a}^{\bar{b}} f d \alpha & =\int_{a}^{\bar{b}}\left(f \alpha^{\prime}\right) d \alpha \ldots \ldots .(9) \text { and } \\
\int_{\underline{a}}^{b} f d \alpha & =\int_{\underline{a}}^{b}\left(f \alpha^{\prime}\right) d \alpha \ldots \ldots .(10) \\
\therefore f \in \mathcal{R}(\alpha) & \Leftrightarrow \int_{\underline{a}}^{b} f d \alpha=\int_{a}^{\bar{b}} f d \alpha \\
\Leftrightarrow \int_{\underline{a}}^{b}\left(f \alpha^{\prime}\right) d \alpha & =\int_{a}^{b}\left(f \alpha^{\prime}\right) d \alpha(\text { by }(9) \text { and }(10)) \\
\Leftrightarrow f\left(\alpha^{\prime}\right) & \in \mathcal{R}^{b} \\
\text { Now, } \int_{a}^{b} f d \alpha & =\int_{a}^{\bar{b}} f d \alpha \\
& =\int_{a}^{\bar{b}}\left(f \alpha^{\prime}\right) d x(b y(9)) \\
& =\int_{a}^{b}\left(f \alpha^{\prime}\right) d x \\
& =\int_{a}^{b} f(x) \alpha^{\prime}(x) d x \\
\therefore \int_{a}^{b} f d \alpha & =\int_{a}^{b} f(x) \alpha^{\prime}(x) d x
\end{aligned}
$$

Remark 4.22 The above theorem gives the relation of \mathcal{R} integral and $\mathcal{R}(\alpha)$ integral.

Theorem 4.23 Change of Variable: Suppose ϕ is a strictly increasing function that maps an interval $[A, B]$ onto $[a, b]$. Suppose α is monotonically increasing on $[a, b]$ and $f \in \mathcal{R}(\alpha)$ on $[a, b]$. Define β and g on $[A, B]$ by $\beta(y)=\alpha(\phi(y)), g(y)=f(\phi(y))$, then $g \in \mathcal{R}(\beta)$ and $\int_{A}^{B} g d(\beta)=\int_{a}^{b} f d \alpha$. Proof: $g(y)=(f \cdot \phi) x=f(\phi(y))=f(x)$

$$
\begin{aligned}
{[A, B] } & \xrightarrow{\phi}[a, b] \xrightarrow{f} \mathcal{R} \\
{[A, B] } & \xrightarrow{\phi}[a, b] \xrightarrow{\alpha} \mathcal{R} \\
\beta(y) & =(\alpha \cdot \phi) y \\
& =\alpha(\phi(y)) \\
& =\alpha(x)
\end{aligned}
$$

Let $P=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ be any partition of $[a, b]$. Since ϕ is onto for each i, there exists $y_{i} \in[A, B]$ such that $\phi\left(y_{i}\right)=x_{i}, i=0,1,2, \ldots, n . \quad \therefore$ $\left\{y_{0}, y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a partition of $[A, B]$ every partition of $[A, B]$ can be obtained in this way (since ϕ is monotonically increasing)

$$
\begin{aligned}
\text { For } y & \in\left[y_{i-1}, y_{i}\right] \\
g(y) & =(f \cdot \phi) y \\
g(y) & =f(\phi(y)) \\
& =f(x) \text { where } x=\phi(y), x \in\left[x_{i-1}, x_{i}\right] \\
\Rightarrow \sup g(y) & =\sup f(x) \\
\Rightarrow M_{i^{\prime}} & =M_{i} \ldots \ldots(1)
\end{aligned}
$$

Similarly $\inf g(y)=\inf f(x)$

$$
m_{i^{\prime}}=m_{i} \ldots \ldots . .(2
$$

$$
\text { Now } \Delta \beta_{i}=\beta\left(y_{i}\right)-\beta\left(y_{i-1}\right)
$$

$$
=(\alpha \circ \phi) y_{i}-(\alpha \circ \phi) y_{i-1}
$$

$$
=\alpha\left(\phi\left(y_{i}\right)\right)-\alpha\left(\phi\left(y_{i-1}\right)\right)
$$

$$
=\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)
$$

$$
=\Delta \alpha_{i}
$$

$$
\therefore U(Q, g, \beta)=\sum_{i=1}^{n} M_{i}^{\prime} \Delta \beta_{i}
$$

$$
=\sum_{i=1}^{n} M_{i} \Delta \alpha_{i}(\text { by }(1) \text { and }(3))
$$

$$
\begin{equation*}
=U(P, f, \alpha) \tag{4}
\end{equation*}
$$

Similarly $L(Q, g, \beta)=L(P, f, \alpha) \ldots \ldots$ (5)

Since $f \in \mathcal{R}(\alpha)$, given $\epsilon>0$, there exists a partition P of $[a, b]$ such that

$$
\begin{aligned}
U(P, f, \alpha)-L(P, f, \alpha) & <\epsilon \\
\Rightarrow U(Q, g, \beta)-L(Q, g, \beta) & <\epsilon(\text { by }(4) \text { and }(5)) \\
\therefore g & \in \mathcal{R}(\beta) \\
\text { Also } \int_{A}^{B} g d \beta & =\inf U(Q, g, \beta) \\
& =\inf U(P, f, \alpha)(\text { by }(4)) \\
& =\int_{a}^{b} f d \alpha .
\end{aligned}
$$

Note 4.24 Let $\alpha(x)=x$ and $\phi^{\prime} \in \mathcal{R}$ on $[A, B]$.

$$
\begin{aligned}
\therefore \beta(y) & =(\alpha \circ \phi) y \\
& =\alpha(\phi(y)) \\
& =\phi(y) \forall y \in[A, B] \\
\therefore \beta & =\phi \\
\int_{A}^{B} g d \beta & =\int_{a}^{b} f d \alpha \text { (by previous theorem) } \\
\int_{a}^{b} f(x) d x & =\int_{A}^{B} g d \beta \\
& =\int_{A}^{B} g d \phi \\
& =\int_{A}^{B} g(y) \phi^{\prime}(y) d y \text { (by theorem 4.21) }
\end{aligned}
$$

Integrations and Differentiations:

Theorem 4.25 Let $f \in R$ on $[a, b]$, for $a \leq x \leq b$, put $F(x)=\int_{a}^{x} f(t) d t$, then F is continuous on $[a, b]$, further more if f is continuous at some point x_{0} of $[a, b]$, then F is differentiable at x_{0} and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
Proof: Given $F(x)=\int_{a}^{x} f(t) d t$. To Prove: $F(x)$ is continuous on $[a, b]$. Let $a \leq x \leq y \leq b$. Now,

$$
\begin{aligned}
F(y)-F(x) & =\int_{a}^{y} f(t) d t-\int_{a}^{x} f(t) d t \\
& =\int_{a}^{x} f(t) d t+\int_{x}^{y} f(t) d t-\int_{a}^{x} f(t) d t \\
& =\int_{x}^{y} f(t) d t \\
\Rightarrow|F(y)-F(x)| & =\left|\int_{x}^{y} f(t) d t\right| \\
& \leq \int_{x}^{y}|f(t)| d t \\
& \leq \int_{x}^{y} M d t \text { where } M=\sup |f(t)|, t \in[a, b] \\
& =M(y-x)
\end{aligned}
$$

$$
\text { (i.e.) }|F(y)-F(x)| \leq M|y-x|(\because(y-x)=0)
$$

Given $\epsilon>0$, there exists $\delta=\frac{\epsilon}{M}$ such that $|y-x|<\delta \Rightarrow|F(y)-F(x)|<\epsilon$ (i.e.) F is continuous on $[a, b]$. (infact F is uniformly continuous on $[a, b]$). Suppose f is continuous at $x_{0} \in[a, b]$. To Prove: $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$. Given $\epsilon>0$, there exists $\delta>0$ such that $\left|t-x_{0}\right|<\delta \Rightarrow\left|f(t)-f\left(x_{0}\right)\right|<\epsilon \quad$ for $t \in[a, b] \ldots .$. (1)

Let $x_{0}-\delta<s \leq x_{0} \leq t \leq x_{0}+\delta$. Now,

$$
\begin{aligned}
F(t)-F(s) & =\int_{a}^{t} f(t) d t-\int_{a}^{s} f(t) d t \\
& =\int_{a}^{s} f(t) d t+\int_{s}^{t} f(t) d t-\int_{a}^{s} f(t) d t \\
F(t)-F(s) & =\int_{s}^{t} f(t) d t \\
\Rightarrow \frac{F(t)-F(s)}{t-s} & =\frac{1}{t-s} \int_{s}^{t} f(t) d t \\
\Rightarrow \frac{F(t)-F(s)}{t-s}-f\left(x_{0}\right) & =\frac{1}{t-s} \int_{s}^{t} f(t) d t-f\left(x_{0}\right) \\
\frac{F(t)-F(s)}{t-s}-f\left(x_{0}\right) & =\frac{1}{t-s}\left\{\int_{s}^{t} f(t) d t-(t-s) f\left(x_{0}\right)\right\} \\
& =\frac{1}{t-s}\left\{\int_{s}^{t} f(t) d t-\int_{s}^{t} f\left(x_{0}\right) d t\right\} \\
& =\frac{1}{t-s} \int_{s}^{t}\left(f(t)-f\left(x_{0}\right)\right) d t \\
\left|\frac{F(t)-F(s)}{t-s}-f\left(x_{0}\right)\right| & =\left|\frac{1}{t-s} \int_{s}^{t}\left(f(t)-f\left(x_{0}\right)\right) d t\right| \\
& \leq \frac{1}{t-s} \int_{s}^{t}\left|f(t)-f\left(x_{0}\right)\right| d t \\
& <\frac{\in}{t-s} \int_{s}^{t} d t(\text { by }(1)) \\
\left|\frac{F(t)-F(s)}{t-s}-f\left(x_{0}\right)\right| & <\epsilon
\end{aligned}
$$

It follows that $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.
Theorem 4.26 The Fundamental Theorem of Calculus: If $f \in R$ on $[a, b]$ and if there is a differentiable function F such that $F^{\prime}=f$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
Proof: Since $f \in R$ on $[a, b]$, given $\in 0$, there exists a partition $P=$ $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n}\right\}$ of $[a, b]$ such that $U(P, f)-L(P, f)<\epsilon \ldots \ldots$. (1)
Since F is differentiable we can apply the mean value theorem to it on $\left[x_{i-1}, x_{i}\right]$. There exists $t_{i} \in\left[x_{i-1}, x_{i}\right]$ such that

$$
\begin{aligned}
F\left(x_{i}\right)-F\left(x_{i-1}\right) & =\left(x_{i-1}-x_{i}\right) F^{\prime}\left(t_{i}\right) \\
& =\Delta x_{i} f\left(t_{i}\right)\left(\because F^{\prime}=f\right)
\end{aligned}
$$

Summing over i, we get,

$$
\begin{align*}
\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right] & =\sum_{i=1}^{n} \Delta x_{i} f\left(t_{i}\right) \\
F(b)-F(a) & =\sum_{i=1}^{n} f\left(t_{i}\right) \Delta x_{i} \ldots \ldots \tag{2}
\end{align*}
$$

By Theorem 4.10(c), (1) implies that

$$
\begin{equation*}
\left|\sum_{i=1}^{n} f\left(t_{i}\right) \Delta x_{i}-\int_{a}^{b} f(x) d x\right|<\epsilon \ldots \tag{3}
\end{equation*}
$$

Using (2) and (3) we get, $\left|(F(b)-F(a))-\int_{a}^{b} f(x) d x\right|<\epsilon$. Since ϵ is arbitrary, $\int_{a}^{b} f(x) d x=F(b)-F(a)$. Hence the proof.

Theorem 4.27 Integration by parts: Suppose F and G are differentiable functions on $[a, b], F^{\prime}=f \in \mathcal{R}, G^{\prime}=g \in \mathcal{R}$, then

$$
\int_{a}^{b} f(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x
$$

Proof: Let $H(x)=F(x) G(x) . \quad \therefore H^{\prime}(x)=F(x) G^{\prime}(x)+F^{\prime}(x) G(x)=$ $F(x) g(x)+f(x) G(x)$. \qquad
Given f and $g \in \mathcal{R}$. Since F and G are differentiable, they are continuous. \therefore By Theorem 4.11, F and G are integrable $(\in \mathcal{R}) . \therefore$ By Theorem 4.16 $F(x) g(x)+f(x) G(x) \in \mathcal{R}$ (i.e.) $H^{\prime}(x) \in R$. By fundamental theorem of calculus,

$$
\begin{aligned}
\int_{a}^{b} H^{\prime}(x) d x & =H(b)-H(a) \\
\text { (i.e.) } \int_{a}^{b}(F(x) g(x)+f(x) G(x)) d x & =F(b) G(b)-F(a) G(a) \\
\Rightarrow \int_{a}^{b} F(x) g(x) d x+\int_{a}^{b} f(x) G(x) d x & =F(b) G(b)-F(a) G(a) \\
\Rightarrow \int_{a}^{b} F(x) g(x) d x & =F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x
\end{aligned}
$$

Hence the proof.
Definition 4.28 Integration of vector valued functions: Let $f_{1}, f_{2}, \ldots, f_{k}$ be real functions on $[a, b]$ and let $\bar{f}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$ be a mapping of $[a, b] \rightarrow$ \mathbb{R}^{k}. Suppose α increases monotonically on $[a, b]$, then $\bar{f} \in \mathcal{R}(\alpha) \Leftrightarrow$ for each $f_{i} \in \mathcal{R}(\alpha)$, and in this case

$$
\int_{a}^{b} \bar{f} d \alpha=\left(\int_{a}^{b} f_{1} d \alpha, \int_{a}^{b} f_{2} d \alpha, \ldots, \int_{a}^{b} f_{k} d \alpha\right)
$$

Theorem 4.29 Fundamental Theorem of calculus for vector valued functions: If $\bar{F}, \bar{f} \operatorname{map}[a, b]$ into \mathbb{R}^{k} and if $\bar{f} \in \mathcal{R}$ on $[a, b]$ and if $\bar{F}^{\prime}=\bar{f}$ then $\int_{a}^{b} \bar{f}(t) d t=\bar{F}(b)-\bar{F}(a)$.
Proof: Let

$$
\begin{array}{r}
\bar{f}=\left(f_{1}, f_{2}, \ldots, f_{k}\right) \\
\bar{F}=\left(F_{1}, F_{2}, \ldots, F_{k}\right) \\
\bar{F}^{\prime}=\left(F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{k}^{\prime}\right)
\end{array}
$$

Given $\bar{F}^{\prime}=\bar{f} . \therefore\left(F_{1}^{\prime}, F_{2}^{\prime}, \ldots, F_{k}^{\prime}\right)=\left(f_{1}, f_{2}, \ldots, f_{k}\right) \Rightarrow F_{i}^{\prime}=f_{i} \quad \forall i=1,2, \ldots, k$. Since $\bar{f} \in \mathcal{R}$, each $f_{i} \in \mathcal{R} . \therefore$ By fundamental theorem of calculus, for any i.

$$
\begin{align*}
\int_{a}^{b} F_{i}^{\prime}(t) d t & =F_{i}(b)-F_{i}(a) \\
\text { (i.e.) } \int_{a}^{b} f_{i}(t) d t & =F_{i}(b)-F_{i}(a) . \tag{1}
\end{align*}
$$

Now,

$$
\begin{aligned}
\int_{a}^{b} \bar{f}(t) d t & =\left(\int_{a}^{b} f_{1}(t) d t, \int_{a}^{b} f_{2}(t) d t, \ldots, \int_{a}^{b} f_{k}(t) d t\right) \quad \text { (by definition) } \\
(1) \Rightarrow & =\left(F_{1}(b)-F_{1}(a), F_{2}(b)-F_{2}(a), \ldots, F_{k}(b)-F_{k}(a)\right) \\
& =\left(F_{1}(b), F_{2}(b), \ldots, F_{k}(b)\right)-\left(F_{1}(a), F_{2}(a), \ldots, F_{k}(a)\right) \\
& =\bar{F}(b)-\bar{F}(a) \\
\therefore \int_{a}^{b} \bar{f}(t) d t & =\bar{F}(b)-\bar{F}(a)
\end{aligned}
$$

Note 4.30 Schwartz inequality:

$$
\begin{aligned}
\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right|^{2} & \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)\left(\sum_{j=1}^{n}\left|b_{j}\right|^{2}\right) \\
\left|\sum_{j=1}^{n} a_{j} \overline{b_{j}}\right| & \leq\left(\sum_{j=1}^{n}\left|a_{j}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{j=1}^{n}\left|b_{j}\right|^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

Theorem 4.31 If \bar{f} maps $[a, b]$ into \mathbb{R}^{k} and if $\bar{f} \in \mathcal{R}(\alpha)$ for some monotonically increasing function $[a, b]$, then $|\bar{f}| \in \mathcal{R}(\alpha)$ and $\left|\int_{a}^{b} \bar{f}(t) d \alpha\right| \leq \int_{a}^{b}|\bar{f}(t)| d \alpha$.

Proof:

$$
\begin{aligned}
\bar{f} & =\left(f_{1}, f_{2}, \ldots, f_{k}\right) \\
|\bar{f}| & =\left(f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+\ldots+f_{k}^{2}\right)^{1 / 2} \\
\text { Since } \bar{f} & \in \mathcal{R}(\alpha) \\
\Rightarrow f_{i} & \in \mathcal{R}(\alpha) \forall i=1,2, \ldots, k \\
\Rightarrow f_{i}^{2} & \in \mathcal{R}(\alpha) \\
\Rightarrow\left(f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+\ldots+f_{k}^{2}\right) & \in \mathcal{R}(\alpha) \\
\Rightarrow\left(f_{1}^{2}+f_{2}^{2}+f_{3}^{2}+\ldots+f_{k}^{2}\right)^{2} & \in \mathcal{R}(\alpha)\left(\text { by Theorem } 4.17, \phi(t)=t^{1 / 2}\right) \\
\Rightarrow|\bar{f}| & \in \mathcal{R}(\alpha)
\end{aligned}
$$

To Prove:

$$
\left|\int_{a}^{b} \bar{f}(t) d \alpha\right| \leq \int_{a}^{b}|\bar{f}(t)| d \alpha
$$

Let $\bar{y}=\int_{a}^{b} \bar{f}(t) d \alpha$. If $\bar{y}=0$, then the inequality is trivial (for, $\bar{y}=0 \Rightarrow$ L.H.S $=0$ and $|\bar{f}| \geq 0 \Rightarrow \int_{a}^{b}|\bar{f}(t)| d \alpha \geq 0$ (i.e.) R.H.S ≥ 0)

Let $\bar{y} \neq 0$

$$
\begin{aligned}
& \therefore \bar{y}=\int_{a}^{b} \bar{f} d \alpha=\left(\int_{a}^{b} f_{1} d \alpha, \int_{a}^{b} f_{2} d \alpha, \ldots, \int_{a}^{b} f_{k} d \alpha\right) \\
& =\left(y_{1}, y_{2}, \ldots, y_{k}\right) \text { where } y_{i}=\int_{a}^{b} f_{i} d \alpha \\
& \text { Now }|\bar{y}|^{2}=y_{1}^{2}+y_{2}^{2}+\ldots+y_{k}^{2} \\
& \text { (i.e.) }|\bar{y}|^{2}=\sum_{i=1}^{k} y_{i}^{2} \\
& =\sum_{i=1}^{k} y_{i} y_{i} \\
& =\sum_{i=1}^{k} y_{i}\left(\int_{a}^{b} f_{i} d \alpha\right) \\
& =\sum_{i=1}^{k} \int_{a}^{b}\left(y_{i} f_{i}\right) d \alpha \\
& =\int_{a}^{b}\left(\sum_{i=1}^{k} y_{i} f_{i}\right) d \alpha \\
& \leq \int_{a}^{b}\left(\sum_{i=1}^{k}\left|y_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{i=1}^{k}\left|f_{i}\right|^{2}\right)^{1 / 2} d \alpha \text { (by schwartz inequality) } \\
& \text { (i.e.) }|\bar{y}|^{2} \leq \int_{a}^{b}\left(\sum_{i=1}^{k} y_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{k} f_{i}^{2}\right)^{1 / 2} d \alpha \\
& =\int_{a}^{b}|\bar{y}||\bar{f}| d \alpha \\
& =|\bar{y}| \int_{a}^{b}|\bar{f}| d \alpha \\
& \text { (i.e.) }|\bar{y}|^{2} \leq|\bar{y}| \int_{a}^{b}|\bar{f}| d \alpha \\
& \Rightarrow|\bar{y}| \leq \int_{a}^{b}|\bar{f}| d \alpha \\
& \left|\int_{a}^{b} \bar{f} d \alpha\right| \leq \int_{a}^{b}|\bar{f}| d \alpha
\end{aligned}
$$

Uniform Convergence:

Definition 4.32 Uniform Convergence: We say that $\left\{f_{n}\right\}$ of function $n=1,2, \ldots$ converges uniformly on E to a function f is every $\epsilon>0$ there is an integer N such that $n \geq N \Rightarrow\left|f_{n}(x)-f(x)\right|<\epsilon$.

Note 4.33 If $\left\{f_{n}\right\}$ converges pointwise on E, then there exists a function f such that for every $\epsilon>0$ and for every x in E there is an integer N depending on ϵ and x such that $\left|f_{n}(x)-f(x)\right|<\epsilon \quad \forall n \geq N$. If $\left\{f_{n}\right\}$ converges uniformly on E, it is possible for each $\epsilon>0$, to find one integer N which will do for all x in E. We say that the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly on E if the $\left\{s_{n}\right\}$ of partial sums defined by $s_{n}(x)=\sum_{i=1}^{n} f_{i}(x)$ converges uniformly on E.

Theorem 4.34 Cauchy's Criterian for Uniform Convergence: The sequence of functions $\left\{f_{n}\right\}$, defined on E, converges uniformly on E iff for every $\epsilon>0$ there exists an integer N such that $n, m \geq N, x \in E \Rightarrow \mid f_{n}(x)-$ $f_{m}(x) \mid<\epsilon$.
Proof: For the 'only if' part we assume that $\left\{f_{n}\right\} \rightarrow f$ uniformly. To Prove: There exists N such that $x \in E n, m \geq N \Rightarrow\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$. Let $\epsilon>0$ such that $\left|f_{n}(x)-f(x)\right| \leq \epsilon / 2 \ldots \ldots$ (1) $\quad \forall n \geq N \quad \forall x \in E$
Now, for $n, m \geq N$

$$
\begin{aligned}
\left|f_{n}(x)-f_{m}(x)\right| & =\left|f_{n}(x)-f(x)+f(x)-f_{m}(x)\right| \\
& \leq\left|f_{n}(x)-f(x)\right|+\left|f(x)-f_{m}(x)\right| \\
& \leq \epsilon / 2+\epsilon / 2(\text { by }(1))
\end{aligned}
$$

$$
\text { (i.e.) }\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon
$$

For the ' $i f^{\prime}$ part we assume that there exists $N>0$ such that $n, m \geq N, x \in$ $E \Rightarrow\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon$.
For fixed x, (2) implies that $\left\{f_{n}(x)\right\}$ is a cauchy sequence $\therefore\left\{f_{n}(x)\right\} \rightarrow$ $f(x)\left(\left|f_{n}(x)-f(x)\right| \rightarrow 0\right)$. To Prove: $\left\{f_{n}\right\} \rightarrow f$ uniformly. In (2), keeping n fixed and taking limit as $m \rightarrow \infty$ we get $\left|f_{n}(x)-f(x)\right| \leq \epsilon \quad \forall n \geq N$ $\forall x \in E . \therefore\left\{f_{n}\right\} \rightarrow f$ uniformly.

Theorem 4.35 Suppose

$$
\lim _{n \rightarrow \infty} f_{n}=f(x), \quad(x \in E)
$$

Put $M_{n}=\sup _{x \in E}\left|f_{n}(x)-f(x)\right|$, then $\left\{f_{n}\right\} \rightarrow f$ uniformly on E iff $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Proof: For the 'only if' part, we assume that $\left\{f_{n}\right\} \rightarrow f$. To Prove: $M_{n} \rightarrow 0$ as $n \rightarrow \infty$. By hypothesis, given $\epsilon>0$, there exists $N>0$ such that $\left|f_{n}(x)-f(x)\right| \leq \epsilon \quad \forall n \geq N \quad \forall x \in E \Rightarrow \sup x \in E\left|f_{n}(x)-f(x)\right| \leq \epsilon$ $\forall n \geq N \Rightarrow M_{n} \leq \epsilon \forall n \geq N$ (i.e.) $M_{n} \rightarrow 0$ as $n \rightarrow \infty$. For the 'if' part, let $M_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then there exists $N>0$ such that $M_{n} \leq \epsilon$ $\forall n \geq N \Rightarrow \sup _{x \in E}\left|f_{n}(x)-f(x)\right| \leq \epsilon \quad \forall n \geq N \Rightarrow\left|f_{n}(x)-f(x)\right| \leq \epsilon$ $\forall n \geq N, x \in E \Rightarrow\left\{f_{n}\right\} \rightarrow f$ uniformly.

Theorem 4.36 Weristress M test for uniform convergence: Suppose $\left\{f_{n}\right\}$ is a sequence of function defined on E and suppose that $\left|f_{1}(x)\right| \leq M_{n}$
$(x \in E, n=1,2 \ldots)$ then $\sum f_{n}$ converges uniformly on E its $\sum M_{n}$ converges. Proof: Assume that $\sum M_{n}$ converges. To Prove: $\sum f_{n}$ converges uniformly. Let $\epsilon>0$ be given. Let $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ be the sequences of partial sums of $\sum f_{n}$ and $\sum M_{n}$ respectively. Since $\sum M_{n}$ converges, $\left\{t_{n}\right\}$ also converges. Since any convergence sequence is a Cauchy sequence $\left\{t_{n}\right\}$ is also a Cauchy sequence. Then there exists $N>0$ such that $\left|t_{n}-t_{m}\right| \leq \epsilon \forall n, m \geq N$. Let $m>n(\geq N)$

$$
\left|t_{n}-t_{m}\right|=\left|\sum_{n+1}^{m} M_{k}\right| \leq \epsilon \ldots \ldots(1)
$$

Now, for $x \in E$,

$$
\begin{aligned}
\left|s_{n}(x)-s_{m}(x)\right| & =\left|\sum_{n+1}^{m} f_{k}(x)\right| \\
& \leq \sum_{n+1}^{m}\left|f_{k}(x)\right| \\
& \leq \sum_{n+1}^{m} M_{k} \leq \epsilon(\text { by }(1)) \\
\therefore\left|s_{n}(x)-s_{m}(x)\right| & <\epsilon
\end{aligned}
$$

\therefore By Cauchy's criteria 4.34 the $\left\{s_{n}\right\}$ converges uniformly on $E . \therefore \sum f_{n}$ converges uniformly.

Theorem 4.37 [Uniform Convergence and Continuity] Suppose $\left\{f_{n}\right\}$ converges to f uniformly on a set E, in a metric space. Let x be a limit point of E and suppose that $\lim _{t \rightarrow x} f_{n}(t)=A_{n}(n=1,2,3 \ldots)$, then $\left\{A_{n}\right\}$ converges $\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n}$. In other words $\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)=$ $\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)$.
Proof: Let $\epsilon>0$ be given. Since $\left\{f_{n}\right\}$ converges to f uniformly on E, by Theorem 4.34, there exists an integer $N>0$ such that $\left|f_{n}(t)-f_{m}(t)\right| \leq \epsilon$ $\forall n, m \geq N, t \in E \ldots \ldots$
Letting $t \rightarrow x$ in (1) we get $\left|A_{n}-A_{m}\right| \leq \epsilon \quad \forall n, m \geq N\left(\because \lim _{t \rightarrow x}=A_{n}\right)$ (i.e.) $\left\{A_{n}\right\}$ is a Cauchy sequence of real numbers. Since \mathbb{R} is complete, $\left\{A_{n}\right\}$ converges to some $A($ in $\mathbb{R})$ (i.e.) $\left\{A_{n}\right\} \rightarrow A . \therefore$ there exists $N_{1}>0$ such that $\left|A_{n}-A\right| \leq \epsilon / 3, \forall n \geq N_{1} \ldots \ldots$.
Now,

$$
\begin{align*}
|f(t)-A| & =\left|f(t)-f_{n}(t)\right|+\left(f_{n}(t)-A_{n}\right)+\left|\left(A_{n}-A\right)\right| \\
& \leq\left|f(t)-f_{n}(t)\right|+\left|f_{n}(t)-A_{n}\right|+\left(A_{n}-A\right) \mid . \tag{3}
\end{align*}
$$

Since $\left\{f_{n}\right\} \rightarrow f$ uniformly, there exists $N_{2}>0$ such that $\left|f_{n}(t)-f(t)\right| \leq \epsilon / 3$ $\forall n \geq N_{2}, t \in E$.. (4)

Since x is a limit point of E and $\because \lim _{t \rightarrow x} f_{n}(t)=A_{n}$, there exists a neighbourhood V of x such that $\left|f_{n}(t)-A_{n}\right| \leq \epsilon / 3 \quad \forall t \in V \cap E \ldots \ldots$. (5)
Let $N_{3}=\max \left\{N_{1}, N_{2}\right\}$. Now using (2),(4) and (5) in (3) we get

$$
\begin{aligned}
|f(t)-A| & \leq \epsilon / 3+\epsilon / 3+\epsilon / 3 \forall n \geq N_{3} \forall t \in V \cap E . \\
\text { (i.e.) }|f(t)-A| & \leq \epsilon \\
\text { (i.e.) } \lim _{t \rightarrow x} f(t) & =A \text { (or) } \\
\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t) & =\lim _{n \rightarrow \infty} A_{n} \\
& \left.=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)\right) \\
\therefore \lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n} &
\end{aligned}
$$

Theorem 4.38 If $\left\{f_{n}\right\}$ is a sequence of continuous functions on E, and if $\left\{f_{n}\right\}$ converges to f uniformly on E then f is continuous on E.
Proof: Enough To Prove: $\lim _{t \rightarrow x} f(t)=f(x)$

$$
\begin{aligned}
\lim _{t \rightarrow x} f(t) & \left.=\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)\right)\left(\because f_{n} \rightarrow f \text { uniformly }\right) \\
\lim _{t \rightarrow x} f(t) & =\lim _{n \rightarrow \infty}\left(\lim _{t \rightarrow x} f_{n}(t)\right)(\text { by Theorem 4.37 }) \\
& =\lim _{n \rightarrow \infty} f_{n}(x)\left(\because f_{n} \text { is continuous }\right) \\
& =f(x)\left(\because f_{n} \rightarrow f \text { uniformly }\right)
\end{aligned}
$$

Remark 4.39 The converse of the above theorem need not be true. (i.e.) a sequence of continuous function may converse to a continuous function, although the convergence is not uniform.

Example $4.40 f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}, 0 \leq x \leq 1, n=1,2,3, \ldots$ Clearly, each f_{n} is continuous. Also f is continuous. But the convergence is not uniform. By Theorem 4.35, for let

$$
\begin{aligned}
M_{n} & =\sup _{x \in[0,1]}\left|f_{n}(x)-f(x)\right| \\
& =\sup _{x \in[0,1]}\left|n^{2} x\left(1-x^{2}\right)^{n}-0\right| \\
& =n^{2} \sup _{x \in[0,1]}\left\{x\left(1-x^{2}\right)^{n}\right\} \\
& \nrightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

By Theorem 4.35, the convergence is not uniform.
Theorem 4.41 [Dini's Theorem] Suppose K is compact and
(a) $\left\{f_{n}\right\}$ is a sequence of continuous functions on K.
(b) $\left\{f_{n}\right\}$ converges pointwise to a continuous functions f on K.
(c) $f_{n}(x) \geq f_{n+1}(x) \quad \forall x \in K, n=1,2,3 \ldots$
then $f_{n} \rightarrow f$ uniformly on K.
Proof: Given K is compact. Let $g_{n}=f_{n}-f$. Since each f_{n} is continuous and f is continuous, g_{n} is continuous for all n. Since $\left\{f_{n}\right\}$ converges pointwise to $f,\left\{g_{n}\right\}$ converges pointwise to 0 . Since $f_{n}(x) \geq f_{n+1}(x)$ $\forall x \in K, n=1,2 \ldots f_{n}(x)-f(x) \geq f_{n+1}(x)-f(x)$. (i.e.) $g_{n}(x) \geq g_{n+1}(x)$ $\forall x, n=1,2 \ldots$ (i.e.) $\left\{g_{n}\right\}$ is also a monotonic decreasing sequence. To prove that $\left\{f_{n}\right\}$ converges to f uniformly. It is enough to prove that $\left\{g_{n}\right\}$ converges to 0 uniformly. Let $\epsilon>0$ be given. For each n, let $K_{n}=\left\{x \in K \mid g_{n}(x) \geq \epsilon\right\}$. Now,

$$
\begin{aligned}
K_{n} & =\left\{x \in K \mid g_{n}(x) \geq \in[\epsilon, \infty)\right\} \\
& =\left\{x \in K \mid x \in g_{n}^{-1}[\epsilon, \infty)\right\} \\
& =g_{n}^{-1}[\epsilon, \infty)
\end{aligned}
$$

Since $[\epsilon, \infty)$ is closed in R and g_{n} is continuous, $g_{n}^{-1}[\epsilon, \infty)$ is closed in K. (i.e.) K_{n} is a closed subspace of the compact space $K . \therefore K_{n}$ is compact (\because every closed subspace of a compact space is compact). Claim: $K_{n} \supset$ $K_{n+1}, n=1,2,3 \ldots$ Let $x \in K_{n+1} \Rightarrow g_{n+1}(x) \geq \epsilon$. But $g_{n}(x) \geq g_{n+1}(x)$ (by (1)). $\therefore g_{n}(x) \geq g_{n+1}(x) \geq \epsilon \Rightarrow g_{n}(x) \geq \epsilon \Rightarrow x \in K_{n} \therefore K_{n+1} \subset K_{n}$. Fix $x \in K$. Since $\left\{g_{n}\right\}$ converges pointwise to $0 .\left\{g_{n}(x)\right\} \rightarrow 0$. Then there exists $N(x)>0$ such that $\left|g_{n}(x)-0\right|<\epsilon \quad \forall n \geq N(x) \Rightarrow g_{n}(x)<\epsilon \quad \forall n \geq N(x) \Rightarrow$ $x \notin K_{n} \quad \forall n \geq N(x) \Rightarrow x \notin \bigcap_{n=1}^{\infty} K_{n}$. Since x is arbitrary, $\bigcap_{n=1}^{\infty} K_{n}=\phi \Rightarrow$ $K_{N}=\phi$ for some $N . \therefore g_{N}(x)<\epsilon \forall x \in K$. But

$$
\begin{gathered}
0 \leq g_{n}(x) \leq g_{N}(x)<\epsilon \forall x \in K, \forall n \geq N \\
g_{n}(x)<\epsilon \forall x \in K, \forall n \geq N \\
\text { (i.e.) }\left|g_{n}(x)-0\right|<\epsilon \forall x \in K, \forall n \geq N
\end{gathered}
$$

Hence $\left\{g_{n}\right\} \rightarrow 0$ uniformly.

Note 4.42 Compactness is really needed in the above theorem.

Example $4.43 f_{n}(x)=\frac{1}{n x+1}, 0<x<1, n=1,2,3 \ldots\left\{f_{n}\right\} \rightarrow f$ pointwise where $f(x)=0 \forall x \in(0,1)$ and $(0,1)$ is not compact. Clearly, each f_{n} is continuous. Also f is continuous. Now,

$$
\begin{aligned}
n+1 & >n \\
\Rightarrow(n+1) x & >n x \\
\Rightarrow(n+1) x+1 & >n x+1 \\
\Rightarrow \frac{1}{(n+1) x+1} & <\frac{1}{n x+1} \\
\Rightarrow f_{n+1}(x) & <f_{n}(x)
\end{aligned}
$$

$\Rightarrow\left\{f_{n}\right\}$ is a decreasing sequence. But $\left\{f_{n}\right\} \rightarrow f$ uniformly. For, if $\left\{f_{n}\right\} \rightarrow f$ uniformly then, given $\epsilon>0$, there exists $N>0$ such that

$$
\begin{aligned}
\left|f_{n}(x)-f(x)\right| & \leq \epsilon \forall n \geq N, \forall x \in(0,1) \\
\text { (i.e.) }\left|\frac{1}{n x+1}-0\right| & \leq \epsilon \forall x \in(0,1) \\
\left|\frac{1}{n x+1}\right| & \leq \epsilon \forall x \in(0,1) \\
\text { Put } x=\frac{1}{n} \text {. Then } \frac{1}{2} & \leq \epsilon \\
& \Rightarrow \Leftarrow
\end{aligned}
$$

\therefore The convergence is not uniform.

Definition 4.44 If X is a metric space $\mathscr{C}(x)$ denotes the set of all complex valued continuous bounded functions with domain $X . \mathscr{C}(X)=\{f / f: X \rightarrow$ c, f is continuous and bounded $\}$. If X is compact, $\mathscr{C}(X)=\{f / f: X \rightarrow c, f$ is continuous $\}(\because$ any continuous function on a compact space is bounded). For any f in $\mathscr{C}(f)$, sup $\|f\|=\sup _{x \in X}|f(x)|$, since f is bounded $\|f\|<\infty$.

Result $4.45 \mathscr{C}(X)$ is a metric space. Given $f, g \in \mathscr{C}(X)$ define

$$
\begin{aligned}
(i) d(f, g) & =\|f-g\| \\
& =\sup _{x \in E}|f(x)-g(x)| \\
& \geq 0 \\
\therefore d(f, g) & \geq 0 \\
(i i) d(f, g) & =\sup _{x \in E}|f(x)-g(x)| \\
& =\sup _{x \in E}|g(x)-f(x)| \\
& =\|g-f\| \\
& =d(f, g) \\
\text { (iii) } d(f, g)=0 & \Leftrightarrow\|f-g\|=0 \\
& \Leftrightarrow \sup _{x \in E}|f(x)-g(x)| \\
& \Leftrightarrow|f(x)-g(x)|=0 \forall x \in E \\
& \Leftrightarrow f(x)=g(x) \\
& \Leftrightarrow f=g
\end{aligned}
$$

$$
\begin{aligned}
\text { (iv) } d(f, g) & =\|f-g\| \\
& =\sup _{x \in E}|f(x)-g(x)| \\
& =\sup _{x \in E}|(f(x)-h(x))+(h(x)-g(x))| \\
& \leq \sup _{x \in E}\{|(f(x)-h(x))|+|(h(x)-g(x))|\} \\
& \leq \sup _{x \in E}|(f(x)-h(x))|+\sup _{x \in E}|(f(x)-g(x))| \\
& =\|f-h\|+\|h-g\| \\
& =d(f, h)+d(h, g) \\
\text { (i.e.) } d(f, g) & \leq d(f, h)+d(h, g)
\end{aligned}
$$

$\therefore(\mathscr{C}(X), d)$ is a metric space.
Result 4.46 (Analogue of Theorem 4.35) A sequence $\left\{f_{n}\right\} \rightarrow f$ with respect to the metric space $\mathscr{C}(X)$ iff $\left\{f_{n}\right\} \rightarrow f$ uniformly on X.
Proof: 'only if' part:
Assume that $\left\{f_{n}\right\} \rightarrow f$ in $\mathscr{C}(X) .\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$ (i.e.) $\sup _{x \in E} \mid f_{n}(x)-$
$f(x) \mid \rightarrow 0$ as $n \rightarrow \infty$ (i.e.) $M_{n} \rightarrow 0$ as $n \rightarrow \infty$ (Theorem 4.35). $\left\{f_{n}\right\} \rightarrow f$ uniformly (by Theorem 4.35)

'if' part:

Suppose $\left\{f_{n}\right\} \rightarrow f$ uniformly. Then $M_{n} \rightarrow 0$ as $n \rightarrow \infty$ (Theorem 4.35) (i.e.) $\sup x \in E\left|f_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$ (i.e.) $\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty . \therefore\left\{f_{n}\right\} \rightarrow f$ in $\mathscr{C}(X)$

Note 4.47 (i) Closed subsets of $\mathscr{C}(X)$ are called uniformly closed subsets. (ii) If $A \subset \mathscr{C}(X)$ then the closure of A is called the uniform closure of A.

Theorem $4.48 \mathscr{C}(X)$ is a complete metric space.
Proof: Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $\mathscr{C}(X)$. Let $\epsilon>0$ be given. Then there exists $N>0$ such that $\left\|f_{n}-f_{m}\right\|<\epsilon \quad \forall n, m \geq N \ldots \ldots$..... (1)
(i.e.) $\sup _{x \in E}\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon \quad \forall n, m \geq N . \Rightarrow\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon$ $\forall n, m \geq N, x \in X$. By Theorem 4.34, guarantees that $\left\{f_{n}\right\}$ converges uniformly, say f. (i.e.) $\lim _{n \rightarrow \infty} f_{n}(x)=f(x), x \in X$. Claim: $f \in \mathscr{C}(X)$. Since each f_{n} is continuous and $\left\{f_{n}\right\} \rightarrow f$ uniformly (Theorem 4.38). Theorem 4.38 demands that f is also continuous. Again, since $\left\{f_{n}\right\} \rightarrow f$ uniformly, there exists $N_{1}>0$ such that $\left|f_{n}(x)-f(x)\right|<1 \forall n \geq N_{1}, x \in X$. In partic-
ular, $\left|f_{N_{1}}(x)-f(x)\right|<1 \ldots \ldots .$. (2) $\forall x \in X$
Since $f_{N_{1}}(x) \in \mathscr{C}(X),\left|f_{N_{1}}(x)\right| \leq K \ldots \ldots \ldots$. (3) $\forall x \in X$
Now,

$$
\begin{aligned}
|f(x)| & =\left|\left(f(x)-f_{N_{1}}(x)\right)+f_{N_{1}}(x)\right| \\
|f(x)| & \leq\left|f(x)-f_{N_{1}}(x)\right|+\left|f_{N_{1}}(x)\right| \\
& <1+K \text { by (2) and (3)) } \forall x \in X \\
\text { (i.e.) }|f(x)| & <1+K \forall x \in K .
\end{aligned}
$$

$\therefore f$ is bounded. Hence $f \in \mathscr{C}(X)$. It remains to prove that $\left\{f_{n}\right\} \rightarrow f$ in $\mathscr{C}(X)$. For, $\left\{f_{n}\right\} \rightarrow f$ uniformly $\Rightarrow M_{n} \rightarrow 0 \Rightarrow \sup _{x \in X}\left|f_{n}(x)-f(x)\right| \rightarrow 0$ as $n \rightarrow \infty$ (by Theorem 4.35) $\Rightarrow\left\|f_{n}-f\right\| \rightarrow 0$ as $n \rightarrow \infty$. So $\left\{f_{n}\right\} \rightarrow f$ in the metric space $\mathscr{C}(X) . \therefore \mathscr{C}(X)$ is a complete metric space.

Uniform Convergence and Integration

Theorem 4.49 Let α be monotonically increasing on $[a, b]$. Suppose $f_{n} \in$ $\mathcal{R}(\alpha)$ on $[a, b]$ for $n=1,2,3 \ldots$ and suppose $f_{n} \rightarrow f$ uniformly on $[a, b]$ then $f_{n} \in \mathcal{R}(\alpha)$ on $[a, b]$ and $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f d \alpha$.
Proof: Let $\epsilon_{n}=\sup _{a \leq x \leq b}\left|f(x)-f_{n}(x)\right| \ldots \ldots$. (1) (Theorem 4.35)

$$
\begin{align*}
\therefore\left|f-f_{n}\right| & \leq \epsilon_{n} \forall n=1,2,3 \ldots \\
-\epsilon & \leq f-f_{n} \leq \epsilon_{n} \\
\Rightarrow f_{n}-\epsilon_{n} & \leq f \leq f_{n}+\epsilon_{n} \\
\Rightarrow \int_{a}^{b}\left(f_{n}-\epsilon_{n}\right) d \alpha & \leq \int_{\underline{a}}^{b} f d \alpha \leq \int_{a}^{\bar{b}} f d \alpha \leq \int_{a}^{b}\left(f_{n}+\epsilon_{n}\right) d \alpha \ldots \ldots . .(2) \tag{2}\\
\Rightarrow \int_{a}^{b} f_{n} d \alpha-\int_{a}^{b} \epsilon_{n} d \alpha & \leq \int_{\underline{a}}^{b} f d \alpha \leq \int_{a}^{\bar{b}} f d \alpha \leq \int_{a}^{b} f_{n} d \alpha+\int_{a}^{b} \epsilon_{n} d \alpha \\
\Rightarrow \int_{a}^{\bar{b}} f d \alpha-\int_{\underline{a}}^{b} f d \alpha & \leq\left(\int_{a}^{b} f_{n} d \alpha+\int_{a}^{b} \epsilon_{n} d \alpha\right)-\left(\int_{a}^{b} f_{n} d \alpha-\int_{a}^{b} \epsilon_{n} d \alpha\right) \\
& =2 \int_{a}^{b} \epsilon_{n} d \alpha \\
& =2 \epsilon_{n} \int_{a}^{b} d \alpha \\
& =2 \epsilon_{n}[\alpha(b)-\alpha(a)] \\
\text { (i.e.) } \int_{a}^{\bar{b}} f d \alpha-\int_{\underline{a}}^{b} f d \alpha & \leq 2 \epsilon_{n}(\alpha(b)-\alpha(a)) \\
& \rightarrow 0\left(\because \epsilon_{n} \rightarrow 0 \text { as } f_{n} \rightarrow f\right. \text { uniformly by theorem 4.35) } \\
\therefore \int_{a}^{\bar{b}} f d \alpha & =\int_{\underline{a}}^{b} f d \alpha
\end{align*}
$$

Now, $(2) \Rightarrow$

$$
\begin{aligned}
\int_{a}^{b}\left(f_{n}-\epsilon_{n}\right) d \alpha & \leq \int_{a}^{b} f d \alpha \leq \int_{a}^{b}\left(f_{n}+\epsilon_{n}\right) d \alpha \\
\int_{a}^{b} f_{n} d \alpha-\int_{a}^{b} \epsilon_{n} d \alpha & \leq \int_{a}^{b} f d \alpha \leq \int_{a}^{b} f_{n} d \alpha+\int_{a}^{b} \epsilon_{n} d \alpha \\
\Rightarrow \int_{a}^{b} f_{n} d \alpha-\epsilon_{n} \int_{a}^{b} d \alpha & \leq \int_{a}^{b} f d \alpha \leq \int_{a}^{b} f_{n} d \alpha+\epsilon_{n} \int_{a}^{b} d \alpha \\
\Rightarrow-\epsilon_{n} \int_{a}^{b} d \alpha & \leq \int_{a}^{b} f d \alpha-\int_{a}^{b} f_{n} d \alpha \leq \epsilon_{n} \int_{a}^{b} d \alpha \\
\Rightarrow\left|\int_{a}^{b} f d \alpha-\int_{a}^{b} f_{n} d \alpha\right| & \leq \epsilon_{n} \int_{a}^{b} d \alpha \\
& =\epsilon_{n}(\alpha(b)-\alpha(a)) \\
& \rightarrow 0 \text { as } n \rightarrow \infty\left(\because \epsilon_{n} \rightarrow 0\right) \\
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha & =\int_{a}^{b} f d \alpha
\end{aligned}
$$

Corollary 4.50 If $f_{n} \in \mathcal{R}(\alpha)$ on $[a, b]$ and if $f(x)=\sum_{n=1}^{\infty} f_{n}(x)(a \leq x \leq$ b), the series converges uniformly on $[a, b]$, then $\int_{a}^{b} f d \alpha=\sum_{n=1}^{\infty} \int_{a}^{b} f_{n} d \alpha \cdot$ (the series may be integrated term by term)
Proof: Given $\sum f_{n}=f$ (uniformly). Let $s_{n}=\sum_{k=1}^{n} f_{k}$. By hypothesis $\left\{s_{n}\right\} \rightarrow f$ uniformly. By Theorem 4.49,

$$
\begin{aligned}
\int_{a}^{b} f d \alpha & =\lim _{n \rightarrow \infty} \int_{a}^{b} s_{n} d \alpha \\
& =\lim _{n \rightarrow \infty} \int_{a}^{b}\left(\sum_{k=1}^{n} f_{k}\right) d \alpha \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\int_{a}^{b} f_{k} d \alpha\right) \\
& =\sum_{k=1}^{\infty} \int_{a}^{b} f_{k} d \alpha
\end{aligned}
$$

5. UNIT V

Uniform Convergence and Differentiation

Theorem 5.1 Suppose $\left\{f_{n}\right\}$ is a sequence of functions, differentiable on $[a, b]$ such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} in $[a, b]$. If $\left\{f_{n}^{\prime}\right\}$ converges uniformly on $[a, b]$, then $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$ to a function f and $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x), a \leq x \leq b$.
Proof: Since $\left\{f_{n}\left(x_{0}\right)\right\}$ is convergent, it is a Cauchy sequence. Also $\left\{f_{n}^{\prime}\right\}$ converges uniformly. Therefore, there exists an integer $N>0$ such that

$$
\begin{aligned}
\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right| & \leq \epsilon / 2 \ldots \ldots . .(1) \forall n, m \geq N \\
\left|f_{n}^{\prime}(x)-f_{m}^{\prime}(x)\right| & \leq \frac{\epsilon}{2(b-a)} \ldots \ldots .(2) \forall n, m \geq N, \forall x \in[a, b]
\end{aligned}
$$

By applying mean value theorem to $f_{n}-f_{m}$ in $[t, x]$,

$$
\begin{aligned}
&\left(f_{n}-f_{m}\right)(x)-\left(f_{n}-f_{m}\right)(t)=(x-t)\left(f_{n}^{\prime}-f_{m}^{\prime}\right)(y) \\
& \quad \text { where } y \in(a, b), \text { for } t, x \in[a, b] \\
& f_{n}(x)-f_{m}(x)-f_{n}(t)+f_{m}(t)=(x-t)\left(f_{n}^{\prime}(y)-f_{m}^{\prime}(y)\right) \\
&\left|f_{n}(x)-f_{m}(x)-f_{n}(t)+f_{m}(t)\right|=\left|(x-t)\left(f_{n}^{\prime}(y)-f_{m}^{\prime}(y)\right)\right| \\
&=|(x-t)|\left|f_{n}^{\prime}(y)-f_{m}^{\prime}(y)\right| \\
& \leq \frac{|x-t| \epsilon}{2(b-a)} \ldots \ldots(3)(b y(2)) \\
& \leq \frac{(b-a) \epsilon}{2(b-a)}(\because|x-t| \leq b-a) \\
&=\epsilon / 2
\end{aligned}
$$

$\left|f_{n}(x)-f_{m}(x)-f_{n}(t)+f_{m}(t)\right| \leq \epsilon / 2 \ldots \ldots .(4) \forall x, t \in[a, b], \forall n, m \geq N$.

Now,

$$
\begin{aligned}
\left|f_{n}(x)-f_{m}(x)\right| & =\left|\left(f_{n}(x)-f_{m}(x)\right)-\left(f_{n}\left(x_{0}\right)-f_{n}\left(x_{0}\right)\right)+\left(f_{m}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right)\right| \\
& \leq\left|f_{n}(x)-f_{m}(x)-f_{n}\left(x_{0}\right)+f_{m}\left(x_{0}\right)\right|+\left|\left(f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right)\right| \\
& \leq \epsilon / 2+\epsilon / 2(\text { by }(4) \text { and }(1))
\end{aligned}
$$

$\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon \quad \forall n, m \geq N, \forall x \in[a, b]$

Cauchy's criteria guarantees that $\left\{f_{n}\right\}$ converges uniformly, say f. (i.e.) $\lim _{n \rightarrow \infty} f_{n}=f$. To Prove: $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$. Fix $x \in[a, b]$, define

$$
\begin{aligned}
\phi_{n}(t)=\frac{f_{n}(t)-f_{n}(x)}{t-x} \text { and } \phi(t) & =\frac{f(t)-f(x)}{t-x} . \text { Now } \\
\lim _{t \rightarrow x} \phi_{n}(t) & =\lim _{t \rightarrow x} \frac{f_{n}(t)-f_{n}(x)}{t-x} \\
& =f_{n}^{\prime}(x) \ldots \ldots(5) \\
\lim _{t \rightarrow x} \phi(t) & =\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \\
& =f^{\prime}(x) \ldots \ldots(6)
\end{aligned}
$$

$$
\text { Also, }\left|\phi_{n}(t)-\phi_{m}(t)\right|=\left|\frac{f_{n}(t)-f_{n}(x)}{t-x}-\frac{f_{m}(t)-f_{m}(x)}{t-x}\right|
$$

$$
\leq \frac{1}{|t-x|}\left|f_{n}(t)-f_{n}(x)-f_{m}(t)+f_{m}(x)\right|
$$

$$
\leq \frac{1}{|t-x|} \cdot \frac{|t-x| \epsilon}{2(b-a)}(\text { by }(3))
$$

$$
=\frac{\epsilon}{2(b-a)}
$$

$$
\left|\phi_{n}(t)-\phi_{m}(t)\right| \leq \frac{\epsilon}{2(b-a)}
$$

Cauchy's criteria for uniform convergence demands that $\left\{\phi_{n}\right\}$ converges uniformly. Now,

$$
\begin{align*}
\lim _{n \rightarrow \infty} \phi_{n}(t) & =\lim _{n \rightarrow \infty} \frac{f_{n}(t)-f_{n}(x)}{t-x} \\
& =\frac{f(t)-f(x)}{t-x} \\
& =\phi(t) \\
(i . e .) \phi(t) & =\lim _{n \rightarrow \infty} \phi_{n}(t) \ldots \ldots .(7) \tag{7}
\end{align*}
$$

Finally, $f^{\prime}(x)=\lim _{t \rightarrow x} \phi(t)($ by (6))

$$
\begin{aligned}
& =\lim _{t \rightarrow x}\left(\lim _{n \rightarrow \infty} \phi_{n}(t)\right)(\text { by }(7)) \\
& =\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} \phi_{n}(t)\left(\because\left\{\phi_{n}\right\} \rightarrow \phi\right. \text { uniformly and by Theorem 4.37) } \\
& =\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)(\text { by }(5))
\end{aligned}
$$

Therefore $f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$.
Theorem 5.2 There exists a real continuous function on the real line which is no where differentiable.
Proof: Let $\phi(x)=|x|,-1 \leq x \leq 1$ and $\phi(x+2)=\phi(x) \quad \forall x \in R$. Define $f(x)=\sum_{n=0}^{\infty}(3 / 4)^{n} \phi\left(4^{n} x\right), x \in R$. We observe that,

$$
\begin{aligned}
|\phi(s)-\phi(t)| & \leq|s-t| \ldots \ldots(1) \forall s, t \in R \\
\left|(3 / 4)^{n} \phi\left(4^{n} x\right)\right| & \leq(3 / 4)^{n}
\end{aligned}
$$

$\sum_{n=0}^{\infty}(3 / 4)^{n}$ is a geometric series with common ratio $\frac{3}{4}<1$ and hence it converges to $\frac{1}{1-3 / 4}=4$. Now, Weierstrass M test for uniform convergence demands that $\sum(3 / 4)^{n} \phi\left(4^{n} x\right)$ converges uniformly to f. Clearly $f(x)$ is continuous. Fix a real number x and a positive integer m define $\delta_{m}= \pm \frac{1}{2}(4-m)$ where the sign is chosen such that no integer lies between $4^{m}(x)$ and $4^{m}\left(x+\delta_{m}\right)$. This is possible since $\left|4^{m} \delta_{m}\right|=1 / 2$. Let $\gamma_{n}=\frac{\phi\left(4^{m}\left(x+\delta_{m}\right)\right)-\phi\left(4^{m} x\right)}{\delta_{m}}$. Now,

$$
4^{n} \delta_{m}= \pm \frac{1}{2} 4^{n-m}= \begin{cases}\text { an integer } & n \geq m \\ \text { not an integer } & 0 \leq n \leq m\end{cases}
$$

when $n>m$,

$$
\begin{align*}
\gamma_{n} & =\frac{\phi\left(4^{n}\left(x+\delta_{m}\right)\right)-\phi\left(4^{n} x\right)}{\delta_{m}} \\
\gamma_{n} & =\frac{\phi\left(4^{m} x+4^{n} \delta_{m}\right)-\phi\left(4^{n} x\right)}{\delta_{m}} \\
\gamma_{n} & =\frac{\phi\left(4^{n} x\right)-\phi\left(4^{n} x\right)}{\delta_{m}}\left(\because 4^{n} \delta_{m} \text { is even }\right) \\
& =0 \\
\text { (i.e.) } \gamma_{n} & =0 \forall n \geq m . \ldots \ldots . .(2) \tag{2}
\end{align*}
$$

when $n<m$,

$$
\begin{align*}
\left|\gamma_{n}\right| & =\left|\frac{\phi\left(4^{n}\left(x+\delta_{m}\right)\right)-\phi\left(4^{n} x\right)}{\delta_{m}}\right| \\
& \leq \frac{\left|4^{n}\left(x+\delta_{m}\right)-4^{n} x\right|}{\left|\delta_{m}\right|} \\
\left|\gamma_{n}\right| & \leq\left|\frac{4^{n} \delta_{m}}{\delta_{m}}\right| \\
(o r)\left|\gamma_{n}\right| & \leq 4^{n}, \forall n<m \ldots \ldots .(3) \tag{3}
\end{align*}
$$

when $n=m$

$$
\begin{align*}
\left|\gamma_{n}\right| & =\phi\left|\gamma_{m}\right| \\
& =\left|\frac{\phi\left(4^{m}\left(x+\delta_{m}\right)\right)-\phi\left(4^{m} x\right)}{\delta_{m}}\right| \\
& =\left|\frac{4^{m} \delta_{m}}{\delta_{m}}\right| \\
\left|\gamma_{n}\right| & =4^{m} n=m \ldots(4) \tag{4}
\end{align*}
$$

Now,

$$
\begin{aligned}
\left|\frac{f\left(x+\delta_{m}\right)-f(x)}{\delta_{m}}\right| & =\left|\frac{\sum_{n=0}^{\infty}(3 / 4)^{n} \phi\left(4^{n}\left(x+\delta_{m}\right)\right)-\sum_{n=0}^{\infty}(3 / 4)^{n} \phi\left(4^{n} x\right)}{\delta_{m}}\right| \\
& =\left|\sum_{n=0}^{\infty}(3 / 4)^{n} \frac{\left\{\phi\left(4^{m}\left(x+\delta_{m}\right)\right)-\phi\left(4^{m} x\right)\right\}}{\delta_{m}}\right| \\
& =\left|\sum_{n=0}^{\infty}(3 / 4)^{n} \gamma_{n}\right| \\
& =\left|\sum_{n=0}^{m}(3 / 4)^{n} \gamma_{n}\right|(\text { by }(2)) \\
& \geq\left|(3 / 4)^{m} \gamma_{m}\right|-\left|\sum_{n=0}^{m-1}(3 / 4)^{n} \gamma_{n}\right| \\
& \geq(3 / 4)^{m}\left|\gamma_{m}\right|-\sum_{n=0}^{m-1}(3 / 4)^{n}\left|\gamma_{n}\right| \\
& \geq(3 / 4)^{m} 4^{m}-\sum_{n=0}^{m-1}(3 / 4)^{n} 4^{n}(\text { by }(4) \text { and }(3)) \\
& =3^{m}-\sum_{n=0}^{m-1} 3^{n} \\
& =3^{m}-\frac{3^{m}-1}{3-1} \\
& =\frac{3^{m}+1}{2} \\
\left|\frac{f\left(x+\delta_{m}\right)-f(x)}{\delta_{m}}\right| & \geq \frac{3^{m}+1}{2}
\end{aligned}
$$

As $m \rightarrow \infty, \delta_{m} \rightarrow 0$ and $\frac{3^{m}+1}{2} \rightarrow \infty$. It follows that $f^{\prime}(x)$ does not exists.

Equicontinuous family of functions:

Definition 5.3 Pointwise bounded: Let f_{n} be a sequence of functions defined on E. We say $\left\{f_{n}\right\}$ is pointwise bounded if $\left\{f_{n}(x)\right\}$ is bounded for every $x \in E$. (i.e.) there exists a finite valued function ϕ defined on E such that $\left|f_{n}(x)\right| \leq \phi(x), \quad \forall x \in E, n=1,2,3, \ldots$

Definition 5.4 Uniform boundedness: $\left\{f_{n}\right\}$ is said to be uniformly bounded on E if there exists a number M such that $\left|f_{n}(x)\right| \leq M, \quad \forall x \in E, n=$ $1,2,3, \ldots$

Example 5.5 Even if $\left\{f_{n}\right\}$ is a uniformly bounded sequence of continuous function on a compact set E, there need not exists a subsequence which
converges pointwise on E.

Solution:

$$
\begin{aligned}
f_{n}(x) & =\sin n x, 0 \leq x \leq 2 \pi, n=1,2,3 \ldots \\
\left|f_{n}(x)\right| & =|\sin n x| \leq 1
\end{aligned}
$$

$\therefore f_{n}$ is uniformly bounded. To Prove: $[0,2 \pi]$ is compact. Claim: This does not have any convergent subsequence. Suppose it has any convergent subsequence $\left\{\sin n_{k} x\right\}$,

$$
\begin{aligned}
\lim _{k \rightarrow \infty} \sin n_{k} x & =A \\
\lim _{k \rightarrow \infty}\left(\sin n_{k} x-\sin n_{k+1} x\right) & =0 \\
\lim _{n \rightarrow \infty}\left(\sin n_{k} x-\sin n_{k+1} x\right)^{2} & =0 \\
\int_{0}^{2 \pi} \lim _{k \rightarrow \infty}\left(\sin n_{k} x-\sin n_{k+1} x\right)^{2} d x & =\int_{0}^{2 \pi} 0 d x \\
\int_{0}^{2 \pi} \lim _{k \rightarrow \infty}\left(\sin n_{k} x-\sin n_{k+1} x\right)^{2} d x & =0 \ldots \ldots(1)
\end{aligned}
$$

But,

$$
\begin{align*}
\int_{0}^{2 \pi} & \lim _{k \rightarrow \infty}\left(\sin n_{k} x-\sin n_{k+1} x\right)^{2} d x \\
= & \lim _{k \rightarrow \infty} \int_{0}^{2 \pi}\left(\sin n_{k} x-\sin n_{k+1} x\right)^{2} d x \\
= & \lim _{k \rightarrow \infty} \int_{0}^{2 \pi}\left(\sin ^{2} n_{k} x+\sin ^{2} n_{k+1} x-2 \sin n_{k} x \sin n_{k+1} x\right) d x \\
= & \lim _{k \rightarrow \infty}\left[\int_{0}^{2 \pi} \sin ^{2} n_{k} x d x+\int_{0}^{2 \pi} \sin ^{2} n_{k+1} x d x\right] \\
& -\lim _{k \rightarrow \infty}\left[2 \int_{0}^{2 \pi} \sin n_{k} x \sin n_{k+1} x d x\right] \\
= & \lim _{k \rightarrow \infty}\left[\int_{0}^{2 \pi} \frac{1-\cos 2 n_{k} x}{2} d x+\int_{0}^{2 \pi} \frac{1-\cos 2 n_{k+1} x}{2} d x\right] \\
& +\lim _{k \rightarrow \infty}\left[\int_{0}^{2 \pi}\left(\cos \left(n_{k}+n_{k+1}\right) x-\cos \left(n_{k}-n_{k+1}\right) x\right) d x\right] \\
= & \lim _{k \rightarrow \infty}\left[\left[\frac{x}{2}-\frac{\sin 2 n_{k} x}{4 n_{k}}\right]_{0}^{2 \pi}+\left[\frac{x}{2}-\frac{\sin 2 n_{k+1} x}{4 n_{k+1}}\right]_{0}^{2 \pi}\right] \\
& +\lim _{k \rightarrow \infty}\left[\left[\frac{\sin \left(n_{k}+n_{k+1}\right) x}{\left(n_{k}+n_{k+1}\right)}-\frac{\sin \left(n_{k}-n_{k+1}\right) x}{\left(n_{k}-n_{k+1}\right)}\right]_{0}^{2 \pi}\right] \\
= & \lim _{k \rightarrow \infty}\left[\left[\frac{2 \pi}{2}-0\right]+\left[\frac{2 \pi}{2}-0\right]-[0]+[0-0]\right] \\
= & \lim _{k \rightarrow \infty} 2 \pi \\
= & 2 \pi \ldots \ldots(2) \tag{2}\\
\Rightarrow & \Leftarrow t o(1)
\end{align*}
$$

\therefore There does not exists a subsequence which converges pointwise on E.

Example 5.6 A uniformly bounded convergent sequence of a function, even if defined on a compact set, need not contain a uniformly convergent subsequence,

$$
f_{n}(x)=\frac{x^{2}}{x^{2}+(1-n x)^{2}}, \quad 0 \leq x \leq 1, n=1,2,3 \ldots
$$

Solution: Clearly $[0,1]$ is compact.

$$
\begin{aligned}
\left|f_{n}(x)\right| & =\left|\frac{x^{2}}{x^{2}+(1-n x)^{2}}\right| \leq 1 \\
\lim _{n \rightarrow \infty} f_{n}(x) & =\lim _{n \rightarrow \infty} \frac{x^{2}}{x^{2}+(1-n x)^{2}}, 0 \leq x \leq 1 \\
& =0 \ldots \ldots . .(1) \\
\text { But, } f_{n}\left(\frac{1}{n}\right) & =\frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}+\left(1-n \frac{1}{n}\right)^{2}} \\
& =\frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}+0} \\
& =1 \ldots \ldots(2)
\end{aligned}
$$

Therefore $f_{n_{k}}$ has no subsequence of $\left\{f_{n}\right\}$ which converges uniformly, if there is a subsequence $\left\{f_{n_{k}}\right\}$ converging uniformly. Then,

$$
\begin{aligned}
\left|f_{n_{k}}(x)-0\right| & <\epsilon, \forall n_{k} \geq N . \\
& \Rightarrow\left|f_{n_{k}}\left(\frac{1}{n_{k}}\right)-0\right|<\epsilon \text { when } x=\frac{1}{n_{k}} \\
& \Rightarrow|1-0|<\epsilon \\
& \Rightarrow 1<\epsilon \\
& \Rightarrow \Leftarrow
\end{aligned}
$$

Definition 5.7 Equicontinuity: A family \mathscr{F} of complex functions f defined on a set E in a metric space X is said to be equicontinuous on E if for every $\epsilon>0$, there exists $\delta>0$ such that $|f(x)-f(y)|<\epsilon$ whenever $d(x, y)<\delta,{ }^{'} x, y \in E, f \in \mathscr{F}$.

Note 5.8 (i) Every member of an equicontinuous family is uniformly continuous.
(ii) Example 5.6 is not equicontinuous.

Proof: Let $x=\frac{1}{n}$ and $y=\frac{1}{n+1}$.

$$
\begin{aligned}
d(x, y) & =\left|\frac{1}{n}-\frac{1}{n+1}\right| \\
& =\left|\frac{n+1-n}{n(n+1)}\right| \\
& =\left|\frac{1}{n(n+1)}\right| \\
& <\delta \\
\text { But }\left|f_{n}(x)-f_{n}(y)\right| & =\left|\frac{\frac{1}{n^{2}}}{\frac{1}{n^{2}}}+\left(1-n \frac{1}{n}\right)^{2}-\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{(n+1)^{2}}}+\left(1-n \frac{1}{n+1}\right)^{2}\right| \\
& =\left|1-\frac{\frac{1}{(n+1)^{2}}}{\frac{1}{(n+1)^{2}}}+\left(1-\frac{n}{n+1}\right)^{2}\right| \\
& =\left|1-\frac{1}{\frac{1}{(n+1)^{2}}}\right| \\
& =\left|1-\frac{\frac{1}{(n+1)^{2}}+\left(\frac{n+1-n}{n+1}\right)^{2}}{\frac{1}{(n+1)^{2}}}+\left(\frac{1}{n+1}\right)^{2}\right| \\
& =\left|1-\frac{\frac{1}{(n+1)^{2}}}{\frac{2}{(n+1)^{2}}}\right| \\
& =\left|1-\frac{1}{2}\right|=\frac{1}{2} \\
\left|f_{n}(x)-f_{n}(y)\right| & <\epsilon \Rightarrow \frac{1}{2}<\epsilon \\
& \Rightarrow \Leftarrow(\because \epsilon \text { is arbitrarily small) }
\end{aligned}
$$

\therefore The family is not equicontinuous.
Theorem 5.9 If $\left\{f_{n}\right\}$ is a pointwise bounded sequence of complex functions on a countable set E, then $\left\{f_{n}\right\}$ has a subsequence $\left\{f_{n_{k}}\right\}$ such that $\left\{f_{n_{k}}(x)\right\}$ converges for every x in E.
Proof: Since E is countable, we can arrange the elements of E in a sequence $\left\{x_{i}\right\}, \quad i=1,2, \ldots, \infty$. As $\left\{f_{n}\right\}$ is pointwise bounded $\left\{f_{n_{k}}\left(x_{1}\right)\right\}$ is also a bounded sequence. \therefore This sequence has a convergent subsequence. (i.e.) There exists a subsequence $\left\{f_{1 k}\right\}$ of $\left\{f_{n}\right\}$ such that $\left\{f_{1 k}\left(x_{1}\right)\right\}$ converges as $k \rightarrow \infty$. Let $S_{1}: f_{11} f_{12} f_{13} \ldots$. . Now, $\left\{f_{1 k}\left(x_{1}\right)\right\}$ is bounded. \therefore There exists a subsequence $\left\{f_{2 k}\right\}$ of $\left\{f_{1 k}\right\}$ such that $\left\{f_{2 k}\left(x_{2}\right)\right\}$ converges. Let $S_{2}: f_{21}$ $f_{22} f_{23} \ldots$. Similarly we get $S_{3}, S_{3}: f_{31} \quad f_{32} \quad f_{33} \ldots$. The sequences S_{n} 's have the following properties.
(a) S_{n} is a subsequence of S_{n-1}
(b) $\left\{f_{n k}\left(x_{n}\right)\right\}$ converges as $k \rightarrow \infty$
(c) The functions f_{n} 's appear in the same order in all the subsequences. Consider the diagonal sequence, $S: f_{11} \quad f_{22} \quad f_{33} \ldots \ldots$, by condition (a) S is a subsequence of S_{n} for $n=1,2,3 \ldots$ except possibly its first $n-1$ terms and (b) $\Rightarrow\left\{f_{n n}\left(x_{i}\right)\right\}$ converges as $n \rightarrow \infty$ for every x_{i} in E.

Theorem 5.10 If K is a compact metric space and $f_{n} \in \mathscr{C}(K), \quad n=1,2 \ldots$ and if $\left\{f_{n}\right\}$ converges uniformly on K, then $\left\{f_{n}\right\}$ is equicontinuous on K. Proof: Let $\epsilon>0$ be given. Since $\left\{f_{n}\right\}$ converges uniformly on $K,\left\{f_{n}\right\}$ converges to some f in $\mathscr{C}(K)$. (i.e.) There exists $N>0$ such that

$$
\begin{aligned}
\left\|f_{n}-f\right\| & <\epsilon / 2 \forall n \geq N \\
N o w,\left\|f_{n}-f_{N}\right\| & =\left\|\left(f_{n}-f\right)+\left(f-f_{N}\right)\right\| \\
& \leq\left\|\left(f_{n}-f\right)\right\|+\left\|\left(f-f_{N}\right)\right\| \\
& <\epsilon / 2+\epsilon / 2 \\
& <\epsilon \forall n \geq N \\
(i . e .)\left\|\left(f_{n}-f_{N}\right)\right\| & <\epsilon \forall n \geq N \\
(\text { i.e. }) \sup _{x \in k}\left|\left(f_{n}(x)-f_{N}(x)\right)\right| & <\epsilon \forall n \geq N \\
\Rightarrow\left|\left(f_{n}(x)-f_{N}(x)\right)\right| & <\epsilon \ldots \ldots . . \text { (1) } \forall n \geq N \quad \forall x \in K .
\end{aligned}
$$

Since all continuous functions are uniformly continuous on the compact set K, there exists $\delta_{i}>0$ such that $d(x, y)<\delta_{i} \Rightarrow\left|f_{i}(x)-f_{i}(y)\right|<\epsilon \ldots \ldots$. (2) for $x, y \in K, i=1,2, \ldots, N$. Let $\delta=\min \left\{\delta_{1}, \delta_{2}, \ldots, \delta_{N}\right\}$. Therefore $d(x, y)<\delta \Rightarrow\left|f_{n}(x)-f_{n}(y)\right|<\epsilon \ldots \ldots \ldots$. (3) for $x, y \in K, n=1,2, \ldots, N$. For $n>N$,

$$
\begin{align*}
d(x, y) & <\delta \\
\Rightarrow\left|f_{n}(x)-f_{n}(y)\right| & =\left|\left(f_{n}(x)-f_{N}(x)\right)+\left(f_{N}(x)-f_{N}(y)\right)+f_{N}(y)-f_{n}(y)\right| \\
& \leq\left|\left(f_{n}(x)-f_{N}(x)\right)\right|+\left|f_{N}(x)-f_{N}(y)\right|+\left|f_{N}(y)-f_{n}(y)\right| \\
& <\epsilon+\epsilon+\epsilon(\operatorname{by}(1) \operatorname{and}(2)) \tag{4}
\end{align*}
$$

$\Rightarrow\left|\left(f_{n}(x)-f_{n}(y)\right)\right|<3 \epsilon$.
Combination (3) and (4) proves the result.
Theorem 5.11 If K is compact and if $f_{n} \in \mathscr{C}(K)$ for $n=1,2,3 \ldots$ and if $\left\{f_{n}\right\}$ is pointwise bounded and equicontinuous on K, then
(a) $\left\{f_{n}\right\}$ is uniformly bounded on K
(b) $\left\{f_{n}\right\}$ contains a uniformly convergent subsequence.

Proof:(a) Let $\epsilon>0$ be given. By hypothesis $\left\{f_{n}\right\}$ is equicontinuous. Accordingly, there exists $\delta>0$ such that $d(x, y)<\delta \Rightarrow\left|f_{n}(x)-f_{n}(y)\right|<$ $\epsilon \ldots \ldots$.(1) for $x, y \in K, n=1,2, \ldots$ Clearly, $K \subset \bigcup_{x \in K} N_{\delta}(x)$ where $N_{\delta}(x)$ is an neighbourhood of radius δ with center x. Since K is compact, there
are finitely many points $p_{1}, p_{2}, \ldots, p_{r}$ in K such that $K \subset \bigcup_{i=1}^{N} N_{\delta}\left(p_{i}\right) \ldots \ldots .(2)$. Since $\left\{f_{n}\right\}$ is pointwise bounded, $\left\{f_{n}\left(p_{i}\right)\right\}$ is bounded for $i=1,2, \ldots, r . \therefore$ There exists $M_{i}<\infty, i=1,2, \ldots, r$ such that $\left|f_{n}\left(p_{i}\right)\right|<M_{i}$.
Let $M=\max \left\{M_{1}, M_{2}, \ldots, M_{r}\right\}$. Then $\left|f_{n}\left(p_{i}\right)\right|<M \ldots \ldots$....(3) $\forall i=1,2, \ldots, r$ and $\forall n$.
Let $x \in K$. Then (2) implies $x \in N_{\delta}\left(p_{i}\right)$ for some $i, 1 \leq i \leq r$. Therefore,

$$
d\left(x, p_{i}\right)<\delta \Rightarrow\left|f_{n}(x)-f_{n}\left(p_{i}\right)\right|<\epsilon \ldots \ldots \text {.(4) (by (1)) }
$$

Now,

$$
\begin{aligned}
\left|f_{n}(x)\right| & =\left|f_{n}(x)-f_{n}\left(p_{i}\right)+f_{n}\left(p_{i}\right)\right| \\
& \leq\left|f_{n}(x)-f_{n}\left(p_{i}\right)\right|+\left|f_{n}\left(p_{i}\right)\right| \\
& <\epsilon+M .(\text { by }(3) \text { and }(4))
\end{aligned}
$$

Hence $\left\{f_{n}\right\}$ is uniformly bounded on K.
(b) Given K is compact and $\left\{f_{n}\right\}$ is pointwise bounded, equicontinuous on K. To Prove: $\left\{f_{n}\right\}$ contains a uniformly convergent subsequence. Since K is compact, there exists a countable dense subset $E \subseteq K$ (i.e.) $\bar{E} \subset K$. Theorem 5.9 shows that $\left\{f_{n_{i}}(x)\right\}$ converges for all $x \in E$. Let $g_{i}=f_{n_{i}}$. We shall show that $\left\{g_{i}\right\}$ converges uniformly on K. Let $\epsilon>0$ be given. Since $\left\{f_{n}\right\}$ is equicontinuous on K, there exists $\delta>0$ such that

$$
d(x, y)<\delta \Rightarrow\left|f_{n}(x)-f_{n}(y)\right|<\epsilon \ldots \ldots .(1) \text { for } x, y \in K .
$$

Let $V(x, \delta)=\{y \in K \mid d(x, y)<\delta\}\left(=N_{\delta}(x)\right)$. Clearly, $K \subseteq \bigcup_{x \in K} V(x, \delta)$. Since K is compact and E is dense in K, there exists $x_{1}, x_{2}, \ldots, x_{m}$ in E such that

$$
K \subseteq V\left(x_{1}, \delta\right) \cup V\left(x_{2}, \delta\right) \cup \ldots \cup V\left(x_{m}, \delta\right) \ldots \ldots .(2)
$$

. For $1 \leq s \leq m,\left\{g_{i}\left(x_{s}\right)\right\}$ converges. Then there exists $N>0$ such that

$$
\left|g_{i}\left(x_{s}\right)-g_{j}\left(x_{s}\right)\right|<\epsilon \ldots \ldots .(3) \forall i, j \geq N .
$$

Let $x \in K$, then (2) $\Rightarrow x \in V\left(x_{s}, \delta\right)$ for some $1 \leq s \leq m$.

$$
d\left(x, x_{s}\right)<\delta \Rightarrow\left|g_{i}(x)-g_{i}\left(x_{s}\right)\right|<\epsilon \ldots \ldots(4) \forall i
$$

(by (1) $\because g_{i}=f_{n}$ for some n)
Now,

$$
\begin{aligned}
\left|g_{i}(x)-g_{j}(x)\right| & =\left|g_{i}(x)-g_{i}\left(x_{s}\right)+g_{i}\left(x_{s}\right)-g_{j}\left(x_{s}\right)+g_{j}\left(x_{s}\right)-g_{j}(x)\right| \\
& \leq\left|g_{i}(x)-g_{i}\left(x_{s}\right)\right|+\left|g_{i}\left(x_{s}\right)-g_{j}\left(x_{s}\right)\right|+\left|g_{j}\left(x_{s}\right)-g_{j}(x)\right| \\
& <\epsilon+\epsilon+\epsilon(\text { by }(3) \text { and }(4)) \forall i, j \geq N
\end{aligned}
$$

(i.e.) $\left|g_{i}(x)-g_{i}(x)\right|<3 \epsilon \forall i, j \geq N$.

Since x is arbitrary, the Cauchy's criteria guarantees that $\left\{g_{i}\right\}$ converges uniformly on K.

Theorem 5.12 Stone Weierstrass Theorem- the original form of Weierstrass theorem: If f is a continuous complex function on $[a, b]$, then there exists a sequence of polynomials p_{n} such that

$$
\lim _{n \rightarrow \infty} p_{n}(x)=f(x)
$$

uniformly on $[a, b]$. If f is real, p_{n} may be taken real.
Proof: Without loss of generality, we assume that $[a, b]=[0,1], f(x)=0$ outside $[0,1], f(0)=0$ and $f(1)=0$.
For, suppose the result is true for this case, let

$$
\begin{aligned}
g(x) & =f(x)-f(0)-x[f(1)-f(0)] \\
g(1) & =f(1)-f(0)-1[f(1)-f(0)] \\
& =0 \\
g(0) & =f(0)-f(0) \\
& =0 \\
\text { But } f(x)-g(x) & =f(0)+x[f(1)-f(0)] .
\end{aligned}
$$

Since $g(x)$ is the uniform limit of a sequence of polynomials, $f(x)$ can also be obtained as the uniform limit of a sequence of polynomials.
Let

$$
Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}, n=1,2,3 \ldots
$$

where we choose c_{n} such that

$$
\begin{equation*}
\int_{-1}^{1} Q_{n}(x) d x=1 \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x & =2 \int_{0}^{1}\left(1-x^{2}\right)^{n} d x \\
2 & \geq \int_{-1}^{\frac{1}{\sqrt{n}}}\left(1-x^{2}\right)^{n} d x\left(\because\left[0, \frac{1}{\sqrt{n}}\right] \subseteq[0,1]\right) \\
2 & \geq \int_{-1}^{\frac{1}{\sqrt{n}}}\left(1-n x^{2}\right) d x(\text { by binomial theorem }) \\
& =2\left[x-\frac{n x^{3}}{3}\right]_{0}^{\frac{1}{\sqrt{n}}}
\end{aligned}
$$

$$
\begin{aligned}
& =2\left[\frac{1}{\sqrt{n}}-\frac{n}{3 n^{3 / 2}}\right] \\
& =2\left[\frac{1}{\sqrt{n}}-\frac{1}{3 \sqrt{n}}\right] \\
& =2\left(\frac{2}{3 \sqrt{n}}\right) \\
& =\frac{4}{3 \sqrt{n}} \\
& >\frac{1}{\sqrt{n}} \ldots \ldots(2)(\because 4 / 3>1) \\
& \text { (1) } \Rightarrow \int_{-1}^{1} Q_{n}(x) d x=1 \\
& \Rightarrow \int_{-1}^{1} C_{n}\left(1-x^{2}\right)^{n} d x=1 \\
& \Rightarrow C_{n} \int_{-1}^{1}\left(1-x^{2}\right)^{n} d x=1 \\
& \Rightarrow \int_{-1}^{1}\left(1-x^{2}\right)^{n} d x=\frac{1}{C_{n}} \\
& \Rightarrow \frac{1}{C_{n}}=\int_{-1}^{1}\left(1-x^{2}\right)^{n} d x \\
& \Rightarrow \frac{1}{C_{n}}>\frac{1}{\sqrt{n}} \text { (by (2)) } \\
& \Rightarrow C_{n}>\sqrt{n} \text {......(3) } \\
& \text { Now, } \delta \leq|x| \leq 1 \Rightarrow \delta^{2} \leq x^{2} \\
& \Rightarrow-\delta^{2} \geq-x^{2} \\
& \Rightarrow 1-\delta^{2} \geq 1-x^{2} \\
& \Rightarrow\left(1-\delta^{2}\right)^{n} \geq\left(1-x^{2}\right)^{n} \\
& \Rightarrow C_{n}\left(1-\delta^{2}\right)^{n} \geq C_{n}\left(1-x^{2}\right)^{n} \\
& \Rightarrow C_{n}\left(1-x^{2}\right)^{n} \leq C_{n}\left(1-\delta^{2}\right)^{n} \\
& \Rightarrow C_{n}\left(1-x^{2}\right)^{n} \leq \sqrt{n}\left(1-\delta^{2}\right)^{n}(\text { by (3)) } \\
& \Rightarrow Q_{n}(x) \leq \sqrt{n}\left(1-\delta^{2}\right)^{n} \\
& \rightarrow 0 \text { as } n \rightarrow \infty \\
& \text { Let } p_{n}(x)=\int_{-1}^{1} f(x+t) Q_{n}(t) d t \\
& p_{n}(x)=\int_{-1}^{-x} f(x+t) Q_{n}(t) d t+\int_{-x}^{1-x} f(x+t) Q_{n}(t) d t \\
& +\int_{1-x}^{1} f(x+t) Q_{n}(t) d t \\
& =0+\int_{-x}^{1-x} f(x+t) Q_{n}(t) d t+0
\end{aligned}
$$

$$
\begin{align*}
\therefore p_{n}(x) & =\int_{-x}^{1-x} f(x+t) Q_{n}(t) d t \\
& =\int_{0}^{1} f(T) Q_{n}(T-x) d T \ldots \tag{5}
\end{align*}
$$

Obviously $p_{n}(x)$ is a polynomial in x. Moreover $p_{n}(x)$ is real when f is real. Claim: $p_{n}(x) \rightarrow f(x)$ uniformly. Since $f(x)$ is continuous on $[0,1]$ it is uniformly continuous also. Let $\epsilon>0$ be given, then there exists $\delta>0$ such that

$$
|x-y|<\delta \Rightarrow|f(x)-f(y)|<\epsilon / 2 \ldots \ldots \text { (6) for } x, y \in[0,1]
$$

Let $M=\sup |f(x)|$ for any $x \in[0,1]$.

$$
\begin{aligned}
&\left|p_{n}(x)-f(x)\right|=\left|\int_{-1}^{1} f(x+t) Q_{n}(t) d t-f(x)\right| \\
&=\left|\int_{-1}^{1} f(x+t) Q_{n}(t) d t-f(x) \int_{-1}^{1} Q_{n}(t) d t\right|\left(\because \int_{-1}^{1} Q_{n}(x) d x=1\right) \\
&=\left|\int_{-1}^{1} f(x+t) Q_{n}(t) d t-\int_{-1}^{1} f(x) Q_{n}(t) d t\right| \\
&=\left|\int_{-1}^{1}[f(x+t)-f(x)] Q_{n}(t) d t\right| \\
& \leq \int_{-1}^{1}|f(x+t)-f(x)| Q_{n}(t) d t \\
&= \int_{-1}^{-\delta}|f(x+t)-f(x)| Q_{n}(t) d t+\int_{-\delta}^{\delta}|f(x+t)-f(x)| Q_{n}(t) d t \\
&+\int_{\delta}^{1}|f(x+t)-f(x)| Q_{n}(t) d t \\
& \leq 2 M \int_{-1}^{-\delta} Q_{n}(t) d t+\epsilon / 2 \int_{-\delta}^{\delta} Q_{n}(t) d t+2 M \int_{0}^{1} Q_{n}(t) d t \\
& \leq 2 M \sqrt{n}\left(1-\delta^{2}\right)^{n} \int_{-1}^{-\delta} d t+\epsilon / 2 \int_{-1}^{1} Q_{n}(t) d t \\
& \quad+2 M \sqrt{n}\left(1-\delta^{2}\right)^{n} \int_{0}^{1} d t(\text { by }(4)) \\
& \leq\left.2 M \sqrt{n}\left(1-\delta^{2}\right)^{n} \cdot 1+\epsilon / 2 \cdot 1+2 M \sqrt{n}\left(1-\delta^{2}\right)^{n} \cdot 1\right) \\
&\left(\because \int_{-1}^{\delta} d t=1-\delta<1, \int_{\delta}^{1} d t=1-\delta<1\right) \\
& \leq 4 M \sqrt{n}\left(1-\delta^{2}\right)^{n}+\epsilon / 2 \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

$\therefore p_{n}(x) \rightarrow f(x)$ uniformly.

Some Special Functions

Definition 5.13 Power Series: A function of the form

$$
f(x)=\sum_{n=0}^{\infty} C_{n} x^{n} \quad \text { (or) } f(x)=\sum_{n=0}^{\infty} C_{n}(x-a)^{n}
$$

is called a power series.
Theorem 5.14 Suppose the series $\sum_{n=0}^{\infty} C_{n} x^{n} \ldots \ldots$ (1) converges for $|x|<$ R and define $f(x)=\sum_{n=0}^{\infty} C_{n} x^{n} \ldots \ldots$ (2) $(|x|<R)$, then (1) converges uniformly on $[-R+\epsilon, R-\epsilon]$ no matter which $\epsilon>0$ is choosen. The function f is continuous and differentiable in $(-R, R)$ and $f^{\prime}(x)=\sum_{n=0}^{\infty} n C_{n} x^{n-1} \ldots \ldots$ (3) $(|x|<R)$.
Proof: Let $\epsilon>0$ be given. For $|x| \leq R-\epsilon ;\left|C_{n} x^{n}\right| \leq\left|C_{n}(R-\epsilon)^{n}\right|$.
We know, by Cauchy's root test, any power series $\sum_{n=0}^{\infty} C_{n} Z_{n}$ converges in $|x|<R$, where R is the radius of convergence and is given by

$$
R=\frac{1}{\lim _{n \rightarrow \infty} \sqrt[n]{\left|C_{n}\right|}}
$$

\therefore The power series $\sum_{0}^{\infty} C_{n}(R-\epsilon)^{n}$ also converges. $\sum_{n=0}^{\infty} C_{n} x_{n}$ converges uniformly (by Weierstrass M test for uniform convergence), for $x \in[-R+$ $\epsilon, R-\epsilon]$. Since $\lim _{n \rightarrow \infty}$ sup $\sqrt[n]{\left|C_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|C_{n}\right|},(1),(3)$ have the same radius of convergence. (i.e.) By applying Theorem 5.1 for series we see that (3) holds for $x \in[-R+\epsilon, R-\epsilon]$. But when $|x|<R$, we can find $\epsilon>0$ such that $|x| \leq R-\epsilon$. Hence (3) holds for $|x|<R$. Since f^{\prime} exists, f is continuous.

Corollary 5.15 Under the hypothesis of Theorem 5.14, f has derivatives of all orders in $(-\mathbb{R}, \mathbb{R})$ which are given by

$$
f^{k}(x)=\sum_{n=k}^{\infty} n(n-1)(n-2) \cdots(n-k+1) C_{n} x^{n-k} .
$$

In particular $f^{k}(0)=k!C_{k}$ for $k=0,1,2, \ldots$
Proof: Let $f(x)=\sum_{n=0}^{\infty} C_{n} x^{n}=C_{0}+C_{1} x+C_{2} x^{2}+\ldots+C_{n} x^{n}+\ldots$

$$
\begin{aligned}
f^{\prime}(x) & =C_{1}+2 C_{2} x+3 C_{3} x^{2}+\ldots+n C_{n} x^{n-1} \\
f^{\prime}(0) & =1!C_{1} \\
f^{\prime \prime}(x) & =2 C_{2}+3 \cdot 2 C_{3} x+\ldots+n(n-1) C_{n} x^{n-2}+\ldots \\
f^{\prime \prime}(0) & =2!c_{2} \\
f^{\prime \prime \prime}(x) & =3 \cdot 2 \cdot 1 \cdot C_{3}+\ldots+n(n-1)(n-2) C_{n} x^{n-3}+\ldots \\
f^{\prime \prime \prime}(0) & =3!C_{3} \\
f^{k}(x) & =\sum_{n=k}^{\infty} n(n-1)(n-2) \cdots(n-k+1) C_{n} x^{n-k} \\
\therefore f^{k}(0) & =C_{k} k(k-1)(k-2) \cdots 1=k!C_{k} .
\end{aligned}
$$

Theorem 5.16 Abel's theorem: Suppose $\sum C_{n}$ converges. Put $f(x)=$ $\sum_{n=0}^{\infty} C_{n} x^{n}(-1<x<1)$, then

$$
\lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} C_{n}
$$

Proof: Let $S_{n}=C_{0}+C_{1}+C_{2}+\ldots+C_{n-1}+C_{n}, S_{-1}=0$
Now,

$$
\begin{aligned}
\sum_{n=0}^{m} C_{n} x^{n} & =\sum_{n=0}^{m}\left(S_{n}-S_{n-1}\right) x^{n}\left(\because S_{n}-S_{n-1}=C_{n}\right) \\
& =\sum_{n=0}^{m} S_{n} x^{n}-\sum_{n=0}^{m} S_{n-1} x^{n} \\
& =\sum_{n=0}^{m} S_{n} x^{n}-\sum_{n=1}^{m} S_{n-1} x^{n}\left(S_{-1}=0\right) \\
& =\sum_{n=0}^{m-1} S_{n} x^{n}-\sum_{n=1}^{m} S_{n-1} x^{n}+S_{m} x^{m} \\
& =\sum_{n=0}^{m-1} S_{n} x^{n}-\left(\sum_{n=1}^{m} S_{n-1} x^{n-1}\right) x+S_{m} x^{m} \\
& =\sum_{n=0}^{m-1} S_{n} x^{n}-\left(\sum_{n=0}^{m-1} S_{n} x^{n}\right) x+S_{m} x^{m} \\
\sum_{n=0}^{m} C_{n} x^{n} & =(1-x)\left(\sum_{n=0}^{m-1} S_{n} x^{n}\right) x+S_{m} x^{m}
\end{aligned}
$$

Taking limits as $m \rightarrow \infty$ we get

$$
\begin{align*}
& \sum_{n=0}^{\infty} C_{n} x^{n}=(1-x)\left(\sum_{n=0}^{\infty} S_{n} x^{n}\right) x+0\left(|x|<1 \Rightarrow x^{m} \rightarrow 0 \text { asm } \rightarrow \infty\right) \\
& \text { (i.e.) } f(x)=(1-x) \sum_{n=0}^{\infty} S_{n} x^{n} \ldots . .(1) \tag{1}
\end{align*}
$$

Since $\sum C_{n}$ converges, $\left\{S_{n}\right\}$ also converges, say to $s . \therefore$ for $\epsilon>0$, there exists $N>0$ such that

$$
\left|S_{n}-S\right|<\epsilon / 2 \ldots \ldots .(2) \forall n \geq N
$$

Now, since $|x|<1$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \Rightarrow(1-x)\left(\sum_{n=0}^{\infty} x^{n}\right)=1 \tag{3}
\end{equation*}
$$

Now,

$$
\begin{align*}
|f(x)-S| & =\left|(1-x) \sum_{n=0}^{\infty} S_{n} x^{n}-S\right|(\text { by }(1)) \\
& =\left|(1-x) \sum_{n=0}^{\infty} S_{n} x^{n}-S(1-x) \sum_{n=0}^{\infty} x^{n}\right|(\text { by (3)) } \\
& =\left|(1-x)\left(\sum_{n=0}^{\infty}\left(S_{n} x^{n}-S x^{n}\right)\right)\right| \\
& =\left|(1-x)\left(\sum_{n=0}^{\infty}\left(S_{n}-S\right) x^{n}\right)\right| \\
& =\left|(1-x)\left(\sum_{n=0}^{N}\left(S_{n}-S\right) x^{n}+\sum_{n=N+1}^{\infty}\left(S_{n}-S\right) x^{n}\right)\right| \\
& \leq|(1-x)|\left(\sum_{n=0}^{N}\left|S_{n}-S\right||x|^{n}+\sum_{n=N+1}^{\infty}\left|S_{n}-S\right||x|^{n}\right) \\
& =|(1-x)| k+|(1-x)| \sum_{n=N+1}^{\infty}\left|S_{n}-S\right||x|^{n} \text { where } k=\sum_{n=0}^{N}\left|S_{n}-S\right||x|^{n} \\
& <|(1-x)| k+|(1-x)| \epsilon / 2 \sum_{n=N+1}^{\infty}|x|^{n}(\text { by }(2)) \\
& <|(1-x)| k+|(1-x)| \epsilon / 2 \sum_{n=0}^{\infty}|x|^{n} \\
& =|(1-x)| k+|(1-x)| \epsilon / 2 \sum_{1-|x|}^{1} \ldots . .(4) \tag{4}
\end{align*}
$$

we choose $\delta=\epsilon / 2 k, \therefore|x-1|<\delta \Rightarrow|x-1|<\epsilon / 2 k$.
when $x \rightarrow 1,1-|x|=|1-x|$

$$
\begin{aligned}
\therefore|f(x)-S| & <\frac{\epsilon}{2 k} k+|1-x| \epsilon / 2 \cdot \frac{1}{|1-x|} \\
& =\epsilon,|x-1|<\delta \\
\text { (i.e.) } \lim _{x \rightarrow 1} f(x) & =S \text { (or) } \lim _{x \rightarrow 1} f(x)=\sum_{n=0}^{\infty} C_{n}
\end{aligned}
$$

Corollary 5.17 If $\sum a_{n}, \sum b_{n}, \sum c_{n}$ converge to A, B, C and if $c_{n}=a_{0} b_{n}+$ $a_{1} b_{n-1}+\ldots+a_{n} b_{0}$ then $C=A B$.

Proof:

$$
\text { Let } \begin{aligned}
f(x) & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
g(x) & =\sum_{n=0}^{\infty} b_{n} x^{n} \\
h(x) & =\sum_{n=0}^{\infty} c_{n} x^{n}, \text { where } 0 \leq x \leq 1 .
\end{aligned}
$$

For $x<1$, all these series converge (by Theorem 5.14). Hence the series can be multiplied. (i.e.) $f(x) g(x)=h(x)$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 1}\{f(x) g(x)\}=\lim _{x \rightarrow 1} h(x) \\
& \Rightarrow \lim _{x \rightarrow 1} f(x) \lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} h(x) \\
& \Rightarrow\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=\left(\sum_{n=0}^{\infty} a_{n}\right) \text { (by Abel's theorem) } \\
& \Rightarrow A B=C .\left(\because \sum a_{n}=A, \sum b_{n}=B, \sum c_{n}=C\right) . \\
\therefore C & =A B .
\end{aligned}
$$

Theorem 5.18 Given a double sequence $\left\{a_{i j}\right\}, i=1,2,3 \ldots, j=1,2,3 \ldots$ Suppose that $\sum_{j=1}^{\infty}\left|a_{i j}\right|=b_{i}(i=1,2,3, \ldots)$ and $\sum b_{i}$ converges, then

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j}
$$

(Inversion in the order of summation).
Proof: Let $E=\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ be a countable set such that $x_{n} \rightarrow x_{0}$.
Define

$$
\begin{aligned}
f_{i}\left(x_{0}\right) & =\sum_{j=1}^{\infty} a_{i j}(i=1,2,3, \ldots) \\
f_{i}\left(x_{n}\right) & =\sum_{j=1}^{n} a_{i j}(n, i=1,2,3, \ldots) \text { and } \\
g(x) & =\sum_{i=1}^{\infty} f_{i}(x)(x \in E)
\end{aligned}
$$

Clearly then,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{i}\left(x_{n}\right) & =\lim _{n \rightarrow \infty} \sum_{j=1}^{n} a_{i j} \\
& =\sum_{j=1}^{\infty} a_{i j} \\
& =f_{i}\left(x_{0}\right) \\
\therefore \lim _{x_{n} \rightarrow x_{0}} f_{i}\left(x_{n}\right) & =f_{i}\left(x_{0}\right) .
\end{aligned}
$$

\therefore Each f_{i} is continuous at $x_{0} .\left(\because \sum_{j=1}^{\infty} a_{i j}\right.$ converges to $b_{i} \Rightarrow \sum a_{i j}$ converges, $f_{i}\left(x_{0}\right)$ exists $\left.\forall i\right)$
Now,

$$
\begin{aligned}
\left|f_{i}\left(x_{n}\right)\right| & =\left|\sum_{j=1}^{n} a_{i j}\right| \\
& \leq \sum_{j=1}^{n}\left|a_{i j}\right| \\
& \leq \sum_{j=1}^{\infty}\left|a_{i j}\right| \\
& =b_{i} \text { (by hypothesis) } \\
(i . e .)\left|f_{i}\left(x_{n}\right)\right| & \leq b_{i}\left(\forall n, \text { hence } \forall x_{n} \in E\right) \\
(o r)\left|f_{i}(x)\right| & \leq b_{i} \ldots \ldots(1) \forall x \in E .
\end{aligned}
$$

Since $\sum b_{i}$ converges, (1) and weierstrass test guarantees that $\sum_{i=1}^{\infty} f_{i}(x)$ converges uniformly ((i.e.) $g(x)$). Now,

$$
\begin{aligned}
\lim _{x_{n} \rightarrow x_{0}} g\left(x_{n}\right) & =\lim _{x_{n} \rightarrow x_{0}}\left(\sum_{i=1}^{\infty} f_{i}\left(x_{n}\right)\right) \\
& =\sum_{i=1}^{\infty}\left(\lim _{x_{n} \rightarrow x_{0}} f_{i}(x)\right) \\
& =\sum_{i=1}^{\infty} f_{i}\left(x_{0}\right) \text { (by uniform convergence and continuity theorem) } \\
& =g\left(x_{0}\right)
\end{aligned}
$$

(i.e.) $g(x)$ is continuous at x_{0}

$$
\begin{aligned}
g\left(x_{0}\right) & =\lim _{n \rightarrow \infty} g\left(x_{n}\right) \\
\Rightarrow \sum_{i=1}^{\infty} f_{i}\left(x_{0}\right) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} f_{i}\left(x_{n}\right) \\
\Rightarrow \sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} a_{i j}\right) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty}\left(\sum_{j=1}^{n} a_{i j}\right) \\
\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} a_{i j}\right) & =\lim _{n \rightarrow \infty} \sum_{j=1}^{n}\left(\sum_{i=1}^{\infty} a_{i j}\right) \\
\sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} a_{i j}\right) & =\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j} \\
\therefore \sum_{i=1}^{\infty}\left(\sum_{j=1}^{\infty} a_{i j}\right) & =\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty} a_{i j}\right)
\end{aligned}
$$

Theorem 5.19 Taylor's theorem: Suppose $f(x)=\sum_{n=0}^{\infty} C_{n} x^{n}$, the series converging in $|x|<R$. If $-R<a<R$ then f can be expanded in a power series about the point $x=a$ which converges in $|x-a|<R-|a|$ and

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n} \quad(|x-a|<R-|a|)
$$

Proof:

$$
\text { Let } \begin{align*}
& f(x)= \sum_{n=0}^{\infty} C_{n} x^{n} \\
&=\sum_{n=0}^{\infty} C_{n}((x-a)+a)^{n} \\
&=\sum_{n=0}^{\infty} C_{n}\left[\sum_{m=0}^{n}\binom{n}{m}(x-a)^{m} a^{n-m}\right] \\
&= \sum_{n=0}^{\infty} \sum_{m=0}^{n} C_{n}\binom{n}{m}\left((x-a)^{m} a^{n-m}\right) \\
&= \sum_{n=0}^{\infty} \sum_{m=0}^{n} C_{n}\binom{n}{m}\left((x-a)^{m} a^{n-m}\right) \ldots \ldots(1) \tag{1}\\
& \quad\left(\because\binom{n}{m}=0 \text { if } m \geq n\right)
\end{align*}
$$

Consider the series,

$$
\sum_{n=0}^{\infty} \sum_{m=0}^{n}\left|C_{n}\binom{n}{m}\left((x-a)^{m} a^{n-m}\right)\right|
$$

The series,

$$
\sum_{n=0}^{\infty}\left|C_{n}\right| \sum_{m=0}^{n}\binom{n}{m}|x-a|^{m}|a|^{n-m}=\sum_{n=0}^{\infty}\left|C_{n}\right|(|x-a|+|a|)^{n}
$$

this being the power series converges in $|x-a|+|a|<R$ (by Theorem 5.14).
(i.e.) in $|x-a|<R-|a|$. (i.e.) the series (1) converge absolutely in $|x-a|<R-|a|$. Hence by Theorem 5.18, order of summation in (1) can be changed.

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \sum_{m=0}^{n} C_{n}\binom{n}{m}(x-a)^{m} a^{n-m} \\
& =\sum_{n=0}^{\infty} \sum_{n=m}^{n} C_{n}\binom{n}{m}(x-a)^{m} a^{n-m}\left(\because\binom{n}{m}=0 \text { if } n<m\right) \\
& =\sum_{n=0}^{\infty} \sum_{n=m}^{n} C_{n} \frac{n(n-1) \ldots(n-m+1)}{m!}(x-a)^{m} a^{n-m} \\
& =\sum_{n=0}^{\infty} \frac{1}{m!}\left(\sum_{n=m}^{n} C_{n} n(n-1) \ldots(n-m+1) a^{n-m}\right)(x-a)^{m} \\
\therefore f(x) & =\sum_{m=0}^{\infty} \frac{f^{m}(a)}{m!}(x-a)^{m}(\text { by Corollary 5.15) }
\end{aligned}
$$

Theorem 5.20 Suppose the series $\sum a_{n} x^{n}$ and $\sum b_{n} x^{n}$ converge in the segment $S=(-R, R)$. Let E be the set of all x in S at which

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n} \ldots \ldots(1)
$$

If E has a limit point in S, then $a_{n}=b_{n}, n=0,1,2, \ldots$. hence (1) holds for all $x \in S$.
Proof: Put $C_{n}=a_{n}-b_{n}, \forall n=0,1,2, \ldots$ Define

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} C_{n} x^{n} \\
& \text { Now, } f(x)=\sum_{n=0}^{\infty}\left(a_{n}-b_{n}\right) x^{n} \\
& =\sum_{n=0}^{\infty} a_{n} x^{n}-\sum_{n=0}^{\infty} b_{n} x^{n} .
\end{aligned}
$$

Therefore $E=\{x \in S \mid f(x)=0\}$ \qquad (2) $\left(\because \sum a_{n} x^{n}=\sum b_{n} x^{n} \forall x \in E\right)$. Let A be the set of all limit points of E in S and let $B=S-A$. Obviously, B is open in S. Also $S=A \cup B \ldots \ldots$.

We first show that A is open. Let $x_{0} \in A$ ((i.e.) x_{0} is a limit point of E in S). Since $-R<x_{0}<R, f(x)$ can be expanded by Taylor's theorem as a power series about $x_{0},\left|x-x_{0}\right|<R-\left|x_{0}\right|$.

$$
\text { (i.e.) } f(x)=\sum_{n=0}^{\infty} d_{n}\left(x-x_{0}\right)^{n} \ldots \ldots(4),\left|x-x_{0}\right|<R-\left|x_{0}\right| .
$$

Claim: All d_{n} 's are zero. Otherwise, let k be the smallest non-negative integer such that $d_{k} \neq 0$. ((i.e.) $d_{1}=d_{2}=\ldots=d_{k-1}=0$).

$$
\begin{aligned}
& \therefore f(x)= \sum_{n=k}^{\infty} d_{n}\left(x-x_{0}\right)^{n} \\
&= d_{k}\left(x-x_{0}\right)^{k}+d_{k+1}\left(x-x_{0}\right)^{k+1}+\ldots+d_{k+2}\left(x-x_{0}\right)^{k+2}+\ldots \\
&=\left(x-x_{0}\right)^{k}\left(d_{k}+d_{k+1}\left(x-x_{0}\right)+\ldots+d_{k+2}\left(x-x_{0}\right)^{2}+\ldots\right) \\
& f(x)=\left(x-x_{0}\right)^{k} g(x) \ldots . .(5) \text { where } g(x)=d_{k}+d_{k+1}\left(x-x_{0}\right)+\ldots \\
&=\sum_{m=0}^{\infty} d_{m+k}\left(x-x_{0}\right)^{m}
\end{aligned}
$$

Since $g(x)$ is continuous and $g\left(x_{0}\right) \neq 0$, there exists $\delta>0$ such that $g(x) \neq$ 0 for all $\left|x-x_{0}\right|<\delta$. It follows from (5) that $f(x) \neq 0, \forall 0<\left|x-x_{0}\right|<\delta$. But this contradicts that x_{0} is a limit point of $E . \therefore$ All $d_{n}^{\prime} s$ are zero. (i.e.) $f(x)=0, \forall\left|x-x_{0}\right|<R-\left|x_{0}\right|$ (by (4)). Hence $\left(\left|x-x_{0}\right|<R-\left|x_{0}\right|\right) \subset A$ and A is open. Since S is connected, it cannot be expressed as a disjoint union of open sets. $\therefore(3) \Rightarrow A=\phi$ (or) $B=\phi(\because A \cap B=\phi)$. Since E has limit points, by hypothesis in $S, A \neq \phi . \therefore B=\phi$. Hence $S=A$ (by (3)). Claim: $A \subset E$. Let $y \in A$ (i.e.) y is a limit point of $E($ in $S)$ (i.e.) there exists a sequence $\left\{x_{n}\right\}$ in E such that $x_{n} \rightarrow y \therefore f\left(x_{n}\right) \rightarrow f(y) \therefore f(y)=0$ $\left(\because x_{n} \in E \Rightarrow f\left(x_{n}\right)=0 \quad \forall n\right) \Rightarrow y \in E . \therefore A \subset E$. So,$A \subset E \subset S=A \Rightarrow$ $E=S(=A)$. Now, by the definition of $E, f(x)=0 \quad \forall x \in E$

$$
\begin{aligned}
\Rightarrow f(x) & =0 \forall x \in S(\because E=S) \\
\Rightarrow \sum_{0}^{\infty} a_{n} x_{n}-\sum_{n=0}^{\infty} b_{n} x_{n} & =0 \forall x \in S \\
\Rightarrow \sum_{0}^{\infty} a_{n} x_{n} & =\sum_{n=0}^{\infty} b_{n} x_{n} \forall x \in S
\end{aligned}
$$

(i.e.) (1) holds for $\forall x \in S$. Again, $f(x)=0 \forall x \in S \Rightarrow C_{n}=0 \quad \forall n \quad$ (by Corollary 5.15$) \Rightarrow a_{n}=b_{n} \forall n$. Hence the proof.

The Exponential and logarithmic functions:
Definition 5.21 $E(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$. This series is called the exponential series. The ratio test shows that the series converges for every complex number z.

Definition 5.22 We define $E(x)=e^{x}$ for all real x. E is called the exponential function.

Note 5.23 $E(1)=\sum_{n=0}^{\infty} \frac{1}{n!}(=e)$.
Result 5.24 (1) $E(z) E(w)=E(z+w)$.

Proof:

$$
\begin{aligned}
E(z) E(w) & =\left(\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\right)\left(\sum_{n=0}^{\infty} \frac{w^{n}}{n!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left(\frac{z^{k}}{k!}\right)\left(\frac{w^{n-k}}{(n-k)!}\right)\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}\left(\sum_{k=0}^{n} \frac{n!z^{k} w^{n-k}}{k!(n-k)!}\right) \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} z^{k} w^{n-k} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}(z+w)^{n} \\
& =\sum_{n=0}^{\infty} \frac{(z+w)^{n}}{n!} \\
& =E(z+w) .
\end{aligned}
$$

(2) $E(z) \neq 0$ for any z.

Proof:

$$
\begin{aligned}
E(z) E(-z) & =E(z-z)(\text { by result }(1)) \\
& =E(0) \\
& =1(\because E(0)=1) \\
& \Rightarrow E(z) \neq 0 \\
\text { also } E(-z) & =\frac{1}{E(z)}
\end{aligned}
$$

(3) $E(x)>0$ for all real x.

Proof: Case(i): Let $x>0$.

$$
\begin{aligned}
E(x) & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& =1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
& >0\left(\because x>0 \Rightarrow \frac{x^{i}}{i!}>0 \forall i\right)
\end{aligned}
$$

Case(ii): Let $x<0$. Then $x=-y$ where y is positive.

$$
\begin{aligned}
\therefore E(x) & =E(-y) \\
& =\frac{1}{E(y)}(\text { by result }(2)) \\
& >0(\because y>0 \Rightarrow E(y)>0(\text { by Case }(\mathrm{i})) \\
\therefore E(x) & >0
\end{aligned}
$$

Case(iii): $x=0$.

$$
\begin{aligned}
E(x) & =E(0) \\
& =1>0 \\
\text { hence } E(x) & >0 \text { for all real } x .
\end{aligned}
$$

(4) $E(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $E(x) \rightarrow 0$ as $x \rightarrow-\infty$.

Proof:

$$
\begin{aligned}
(i) E(x) & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
& >\infty(\text { as } x \rightarrow \infty)
\end{aligned}
$$

(ii) Let $x=-y$.

$$
\begin{aligned}
x \rightarrow-\infty & \Rightarrow-y \rightarrow-\infty \\
& \Rightarrow y \rightarrow \infty \\
& \Rightarrow E(y) \rightarrow \infty(\text { by }(\mathrm{i})) \\
E(x) & =E(-y)=\frac{1}{E(y)} \rightarrow 0 \\
\text { (i.e.) } E(x) & \rightarrow 0 \text { as } x \rightarrow-\infty .
\end{aligned}
$$

(5) $E(x)$ is strictly increasing on the whole real line.

Proof: (i) Let $x<y$. Then $x^{n}<y^{n}$.

$$
\begin{aligned}
\Rightarrow \frac{x^{n}}{n!} & <\frac{y^{n}}{n!} \\
\Rightarrow \sum_{n=0}^{\infty} \frac{x^{n}}{n!} & <\sum_{n=0}^{\infty} \frac{y^{n}}{n!} \\
& \Rightarrow E(x)<E(y)
\end{aligned}
$$

(ii) Let $x, y<0$ and $x<y$.
$\therefore x=-x_{1}, y=-y_{1}$ where x_{1} and y_{1} are positive.

$$
\begin{aligned}
x<y & \Rightarrow-x_{1}<-y_{1} \\
& \Rightarrow x_{1}>y_{1} \\
& \Rightarrow E\left(x_{1}\right)>E\left(y_{1}\right)(\text { by }(\mathrm{i})) \\
& \Rightarrow \frac{1}{E\left(x_{1}\right)}<\frac{1}{E\left(y_{1}\right)} \\
& \Rightarrow E\left(-x_{1}\right)<E\left(-y_{1}\right)(\text { by result }(2)) \\
& \Rightarrow E(x)<E(y) .
\end{aligned}
$$

(6) $E^{\prime}(z)=E(z)$.

Proof:

$$
\begin{aligned}
E^{\prime}(z) & =\lim _{h \rightarrow 0} \frac{E(z+h)-E(z)}{n} \\
& =\lim _{h \rightarrow 0} \frac{E(z) E(h)-E(z)}{h}(\text { by }(1)) \\
& =\lim _{h \rightarrow 0} E(z)\left(\frac{E(h)-1}{h}\right) \\
& =E(z) \lim _{h \rightarrow 0}\left(\frac{E(h)-1}{h}\right) \\
& =E(z) \lim _{h \rightarrow 0}\left(\frac{\sum_{0}^{\infty} \frac{h^{n}}{n!}-1}{h}\right) \\
& =E(z) \lim _{h \rightarrow 0}\left(\frac{1+\sum_{0}^{\infty} \frac{h^{n}}{n!}-1}{h}\right) \\
& =E(z) \lim _{h \rightarrow 0} \frac{\sum_{0}^{\infty} \frac{h^{n}}{n!}}{h} \\
& =E(z) \lim _{h \rightarrow 0}\left(\sum_{n=1}^{\infty} \frac{h^{n-1}}{n!}\right) \\
& =E(z) \lim _{h \rightarrow 0}\left(1+\frac{h}{2!}+\frac{h^{3}}{3!}+\ldots\right) \\
& =E(z) \cdot 1 \\
& =E(z)
\end{aligned}
$$

(7) $E(n)=e^{n}$ for all n.

Proof: Case(i): $n>0$. we have $E\left(z_{1}+z_{2}+\ldots+z_{n}\right)=E\left(z_{1}\right) E\left(z_{2}\right) \cdots E\left(z_{n}\right)$ (by result 1). Put $z_{i}=1 \forall i$, we have

$$
\begin{aligned}
E(1+1+1+\ldots+1) & =E(1) E(1) \cdots E(1) \\
E(n) & =e e \cdots e(\because E(1)=e) . \\
& =e^{n}
\end{aligned}
$$

Case(ii): $n<0$.
Let $n=-m$ where m is a positive integer.

$$
\begin{aligned}
E(n) & =E(-m)=\frac{1}{E(m)} \\
& =\frac{1}{e^{m}}(\text { by Case }(\mathrm{i}) \text { as } m \text { is a positive integer }) \\
& =e^{-m} \\
& =e^{n}
\end{aligned}
$$

Case(iii): $p=\frac{n}{m}, n$ and m are integers and $m \neq 0$.
Now,

$$
\begin{aligned}
(E(p))^{m} & =E(p) E(p) \cdots E(p) \\
& =E(p+p+\ldots+p) \\
& =E(m p) \\
& =E(n)\left(\because p=\frac{n}{m}\right)
\end{aligned}
$$

$(E(p))^{m}=e^{n}$ (by Case (i) and (ii))

$$
\begin{aligned}
E(p) & =\left(e^{n}\right)^{1 / m} \\
& =e^{n / m} \\
& =e^{p}
\end{aligned}
$$

(8) $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$ for every n.

Proof:

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& >\frac{x^{n+1}}{(n+1)!} \\
\Rightarrow e^{x} & >\frac{x^{n+1}}{(n+1)!} \\
\Rightarrow e^{x} & >\frac{x^{n} \cdot x}{(n+1)!} \\
\Rightarrow \frac{(n+1)!}{x} & >\frac{x^{n}}{e^{x}} \\
x^{n} e^{-x} & <\frac{(n+1)!}{x} \\
& \rightarrow 0 \text { as } x \rightarrow \infty \\
\text { (i.e.) } \lim _{x \rightarrow \infty} x^{n} e^{-x} & =0 .
\end{aligned}
$$

Theorem 5.25 Let e^{x} be defined on R. Then

1. e^{x} is continuous and differentiable for all x.
2. $\left(e^{x}\right)^{\prime}=e^{x}$.
3. e^{x} is strictly increasing function of x and $e^{x}>0$.
4. $e^{x+y}=e^{x} e^{y}$.
5. $e^{x} \rightarrow \infty$ as $x \rightarrow \infty$ and $e^{x} \rightarrow 0$ as $x \rightarrow-\infty$.
6. $\lim _{x \rightarrow \infty} x^{n} e^{-x}=0$ for every n. (i.e.) $e^{x} \rightarrow \infty$ faster than any power of x

Logarithmic function:

Definition 5.26 Inverse of E is $L . E(L(y))=y,(y>0) ; L(E(x))=x,(x$ real).

Result 5.27 (1) $L(1)=0$ (i.e.) $\log 1=0$.
Proof: $L(E(x))=x$. Put $x=0$, we have

$$
\begin{aligned}
E(x) & =E(0) \\
L(1) & =L(E(0)) \\
& =0
\end{aligned}
$$

(2) $\int_{1}^{x} \frac{1}{x} d x=L(x)$

Proof:

$$
\begin{aligned}
E(L(y)) & =y \\
\text { Differentiate w.r.t } y \text {, we get } E^{\prime}(L(y)) L^{\prime}(y) & =1 \\
y L^{\prime}(y) & =1 \\
L^{\prime}(y) & =\frac{1}{y} \\
L(y) & =\int_{1}^{y} \frac{1}{y} d y \\
(\text { or }) L(x) & =\int_{1}^{x} \frac{1}{x} d x
\end{aligned}
$$

(3) $L(u v)-L(u)+L(v)$

Proof: Put $u=E(x) ; v=E(y)$

$$
\begin{aligned}
L(E(x) E(y)) & =L(u v) \\
& =L(E(x+y)) \\
& =x+y \\
& =L(E(x))+L(E(y)) \\
& =L(u)+L(v)
\end{aligned}
$$

(4) $L\left(\frac{u}{v}\right)=L(u)-L(v)$

Proof: Put $u=E(x) ; v=E(y)$

$$
\begin{aligned}
L\left(\frac{u}{v}\right) & =L\left(\frac{E(x)}{E(y)}\right) \\
& =L(E(x) E(-y)) \\
& =x-y \\
& =L(E(x))-L(E(y)) \\
& =L(u)-L(v)
\end{aligned}
$$

(5) $\log x \rightarrow \infty$ as $x \rightarrow \infty$ and $\log x \rightarrow-\infty$ as $x \rightarrow 0$

Proof: $L(E(y))=y$. Put $E(y)=x . y \rightarrow \infty, x \rightarrow \infty ; y \rightarrow-\infty, x \rightarrow$ 0. $\log x=y ; \log x \rightarrow \infty$ as $x \rightarrow \infty$ and $\log x \rightarrow-\infty$ as $x \rightarrow 0$
(6) $L\left(x^{n}\right)=n L(x)$

Proof: Case(i): n is a positive integer.

$$
\begin{aligned}
L\left(x^{n}\right) & =L(x \cdot x \cdots x) \\
& =L(x)+L(x)+\ldots+L(x)(\text { by }(3)) \\
& =n L(x)
\end{aligned}
$$

Case(ii): n is a negative integer. $n=-m$, where m is a positive integer.

$$
\begin{aligned}
L\left(x^{n}\right) & =L\left(x^{-m}\right) \\
& =L\left(\frac{1}{x^{m}}\right) \\
& =L(1)-L\left(x^{m}\right)(\text { by result }(4)) \\
& =0-L\left(x^{m}\right)(\text { by result }(1)) \\
& =-m L(x)(\text { by Case }(\mathrm{i})) \\
& =n L(x)
\end{aligned}
$$

Case(iii): $n=\frac{1}{m}$. Let $x^{1 / m}=y$. (i.e.) $y^{m}=x$.

$$
\begin{aligned}
L(x) & =L\left(y^{m}\right) \\
& =m L(y)(\text { by Case }(\mathrm{i}) \text { and (ii)) } \\
\Rightarrow \frac{1}{m} L(x) & =L(y) \\
\Rightarrow L(y) & =\frac{1}{m} L(x) \\
\Rightarrow L\left(x^{1 / m}\right) & =\frac{1}{m} L(x) \\
\Rightarrow L\left(x^{n}\right) & =n L(x)
\end{aligned}
$$

Case(iv): $n=p / q$.

$$
\begin{aligned}
L\left(x^{n}\right) & =L\left(x^{p / q}\right) \\
& =L\left(x^{1 / q}\right)^{p} \\
& =p L\left(x^{1 / q}\right) \quad(\text { by Case (i) and (ii) }) \\
& =p \frac{1}{q} L(x)(\text { by Case }(\mathrm{iii})) \\
L\left(x^{n}\right) & =n L(x)
\end{aligned}
$$

(7) $x^{n}=E(n L(x))$.

Proof: $E(n L(x))=E\left(L\left(x^{n}\right)\right) \quad($ by $(6))=x^{n}$
(8) $\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}$.

Proof: $x^{\alpha}=E(\alpha L(x))$
Differentiate w.r.t x, we get

$$
\begin{aligned}
\left(x^{\alpha}\right)^{\prime} & =E^{\prime}(\alpha L(x)) \cdot \alpha L^{\prime}(x) \\
& =E(\alpha L(x)) \cdot \alpha \frac{1}{x} \\
& =\alpha x^{\alpha-1} \\
\left(x^{\alpha}\right)^{\prime} & =\alpha x^{\alpha-1}
\end{aligned}
$$

(9) $\lim _{x \rightarrow \infty} x^{-\alpha} \log x=0$.

Proof: Let $0<E<\alpha$.

$$
\begin{aligned}
x^{-\alpha} \log x & =x^{-\alpha} \int_{1}^{x} \frac{1}{t} d t \\
& =x^{-\alpha} \int_{1}^{x} t^{-1} d t \\
& <x^{-\alpha} \int_{1}^{x} t^{\epsilon-1} d t(\because \epsilon-1>-1) \\
& =x^{-\alpha}\left(\frac{t^{\epsilon}}{\epsilon}\right)_{1}^{x} \\
& =x^{-\alpha}\left(\frac{x^{\epsilon}}{\epsilon}-\frac{1}{\epsilon}\right) \\
& <\frac{x \alpha^{\epsilon-\alpha}}{\epsilon} \rightarrow 0 a s x \rightarrow \infty \\
\therefore \lim _{x \rightarrow \infty} x^{-\alpha} \log x=0 . &
\end{aligned}
$$

The Trignometric functions

Definition 5.28

$$
\begin{aligned}
& C(x)=\frac{E(i x)+E(-i x)}{2} \\
& S(x)=\frac{E(i x)-E(-i x)}{2 i}
\end{aligned}
$$

Result 5.29 (1) $C(x)$ and $S(x)$ are real if x is real.

Proof:

$$
\begin{align*}
E(i x) & =1+\frac{(i x)}{1!}+\frac{(i x)^{2}}{2!}+\frac{(i x)^{3}}{3!}+\frac{(i x)^{4}}{4!}+\ldots \\
& =1+\frac{i x}{1!}-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \quad \ldots \ldots(1) \tag{1}\\
E(-i x) & =1+\frac{(-i x)}{1!}+\frac{(-i x)^{2}}{2!}+\frac{(-i x)^{3}}{3!}+\frac{(-i x)^{4}}{4!}+\ldots . \\
& =1-\frac{i x}{1!}-\frac{x^{2}}{2!}+\frac{i x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots \quad \ldots \ldots(2)
\end{align*}
$$

$(1)+(2)$

$$
\begin{aligned}
\Rightarrow E(i x)+E(-i x) & =2\left\{1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots\right\} \\
\frac{E(i x)+E(-i x)}{2} & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \\
C(x) & =\frac{E(i x)+E(-i x)}{2}
\end{aligned}
$$

$\therefore \mathrm{C}(\mathrm{x})$ is real if x is real.
(1)-(2)

$$
\begin{aligned}
\Rightarrow E(i x)-E(-i x) & =2\left\{\frac{i x}{1!}-\frac{x^{2}}{2!}-\frac{i x^{3}}{3!}+\ldots\right\} \\
\Rightarrow \frac{E(i x)-E(-i x)}{2} & =\left\{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots\right\} \\
\Rightarrow S(x) & =\frac{E(i x)-E(-i x)}{2}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\ldots
\end{aligned}
$$

$\therefore S(x)$ is real when x is real.
(2) $E(i x)=C(x)+i S(x)$.

Proof:

$$
\begin{aligned}
C(x)+i S(x) & =\frac{E(i x)+E(-i x)}{2}+i \frac{E(i x)-E(-i x)}{2 i} \\
& =\frac{2 E(i x)}{2} \\
& =E(i x)
\end{aligned}
$$

(3) $\overline{E(z)}=E(\bar{z})$.
(4) $|E(i x)|=1$.

Proof:

$$
\begin{aligned}
|E(i x)|^{2} & =E(i x) \overline{E(i x)} \\
& =E(i x) E(-i x) \\
& =E(i x-i x) \\
& =E(0) \\
|E(i x)|^{2} & =1 \\
|E(i x)| & =1
\end{aligned}
$$

(5) $C(0)=1, \quad S(0)=0$ and $C^{\prime}(x)=-S(x), \quad S^{\prime}(x)=C(x)$.

Proof:

$$
\begin{aligned}
C(x) & =\frac{E(i x)+E(-i x)}{2} \\
C(0) & =\frac{E(0)+E(0)}{2} \\
& =\frac{1+1}{2} \\
& =1 \\
S(x) & =\frac{E(i x)-E(-i x)}{2} \\
S(0) & =\frac{E(0)+E(0)}{2 i} \\
& =\frac{1-1}{2 i} \\
& =0 . \\
C(x) & =\frac{E(i x)+E(-i x)}{2} \\
C^{\prime}(x) & =\frac{E^{\prime}(i x) i+E^{\prime}(-i x)(-i)}{2} \\
& =\frac{i(E(i x)-E(-i x))}{2} \\
& =\frac{i^{2}}{i} \frac{(E(i x)-E(-i x))}{2} \\
& =\frac{-(E(i x)-E(-i x))}{2 i} \\
& =-S(x) \\
S(x) & =\frac{E(i x)-E(-i x)}{2 i} \\
S^{\prime}(x) & =\frac{E^{\prime}(i x) i+E^{\prime}(-i x)(-i)}{2 i}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{i(E(i x)-E(-i x))}{2 i} \\
& =\frac{E(i x)+E(-i x)}{2} \\
S^{\prime}(x) & =C(x)
\end{aligned}
$$

(6) There exists positive numbers x such that $C(x)=0$.

Proof: Suppose there is no such real number x. Since $C(0)=1$, we get $C(x)>0 \forall x$. (i.e.) $S^{\prime}(x)>0, \forall x \Rightarrow S(x)$ is an increasing function. $\therefore 0<x \Rightarrow S(0)<S(x)$ (or) $S(x)>0 \quad \forall x>0$. Let $0<x<t<y$.

$$
\begin{aligned}
\Rightarrow S(x) & <S(t) \\
\Rightarrow \int_{x}^{y} S(x) d t & <\int_{x}^{y} S(t) d t \\
\Rightarrow S(x)(y-x) & <(-C(t))_{x}^{y} \\
& <C(x)-C(y) \\
& \leq|C(x)-C(y)| \leq|C(x)|-|C(y)| \\
& \leq 1+1 \\
S(x)(y-x) & \leq 2 \ldots \ldots(1)
\end{aligned}
$$

Since $S(x)>0$, inequality (1) does not hold for larger value of y. This contradiction proves the assertion. \therefore There exist positive numbers x such that $C(x)=0$.

Course Material Prepared by
Dr. S. PIOUS MISSIER
Associate Professor, P.G. and Research Department of Mathematics
V. O. Chidambaram College, Tuticorin - 628008.

[^0]
[^0]: Manonmaniam Sundaranar University, Directorate of Distance \& Continuing Education, Tirunelveli.

